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THE PLASMA PHYSICS OF PROCESSING DISCHARGES

1. Introduction

Plasma processing has grown into a tremendously important
industrial capability over the last 20 years, and has done so with
virtually no input from traditional plasma physicists. NRL itself is
a large user of plasma processing in such areas as nanocircuit
fabrication (Code 6804), diamond thin film deposition (Code 6174),
superconducting film deposition Code (Code 6340), and nanocube
production and deposition (Code 6371). Undoubtedly there are other
users in the laboratory also. For the past few years, more
traditional plasma physicists have been beginning to see the light
and have been attempting to impact this field. There are plasma
modeling efforts going on in the major industrial users, and
university plasma physicists are beginning to set up programs in the
area also. The Plasma Physics Division at NRL is also attempting to
become active in this area.

The obvious question is whether plasma physicists are
necessary at this late date. Increasingly, a consensus is emerging
that the answer is yes. Both the National Research Council1 and
Naval Studies Board2 have recommended that plasma processing be
put on a firmer scientific footing, and point to several areas where
industrial processes are limited by the plasma itself. Shohet 3

points out that the markets and potential markets for materials
produced by plasma processing is in the hundreds of billions of
dollars. Also he quotes several industrial users as needing a better
understanding of the plasmas in their devices. The research support
in this area in for instance Japan is hundreds of millions of dollars
per year, mostly in the industrial sector, but with tens of millions
per year in the university sector. This report is based on the
assumption that the scientific basis of plasma processing is
important both commercially and within the Navy.

Another, although less compelling reason for interest in the
area regards its recent history. Flamm and Herb 4 point out that the
number of components on an integrated circuit chip has doubled
every year from 1960 to 1980. From 1980 to the present, the rate
of increase has slowed somewhat, but is still impressive. They
point out that thic record of rapid innovation, over such a long time,
is unmatched in all of world history. Much of this innovation
resulted directly from plasma processing, and this alone makes the
field interesting in its own right.

Manuscnpi approved January 9. 1992.



This memo attempts to set out in fairly simple form as much
of the basic theory of processing discharges as is possible given
constraints of reasonable length and simplicity. One thing about
plasma processing is that it is very much an interdisciplinary area
involving (at least) plasma physics, surface physics, atomic and
molecular physics, and chemistry. Reference (3) points out that no
single person is knowledgeable in all areas of plasma processing,
and this author certainly makes no claim to be the first one. This
memo involves mainly the plasma physics; it touches on the atomic
physics and chemistry for fairly simple plasmas, and it regards
surfaces as passive objects that absorb whatever is incident and
(mostly) do not emit anything. Better plasma processing models
must ultimately treat the surface as an active substance which
itself affects the plasma.

There are a large number of textbooks in plasma physics, and
the ones denoted here 5 -12 were particularly useful preparing this
memo. Furthermore there are several other books devoted to plasma
processing 13 -15 , and a very extensive one is in preparation 16.
However, amazingly, this author has found virtually nothing of
reasonable length, simplicity, and scientific rigor that summarizes
the plasma physics of processing discharges. If anything, there may
even be a prejudice that chemistry and surface science are what is
necessary and the plasma physics is just a witches brew that can
never be understood and probably is not very important anyway.
Actually, the plasma physics; namely the kinetic theory of charged
particle gases and the electro-dynamics of charged and conducting
fluids; is a very important part of the problem, and one which can be
understood at least in part. In fact there are now many attempts at
modeling the plasma both with fluid simulations 17 -2 3, Monte Carlo
modeling of particle streams in sheath fields2 4 -2 6 , and full particle
simulations 2 7-3 4 . There is less analytic work, but nevertheless,
analytic work is doable and important 35 - 38 .

To see the importance of analytic work, consider some of the
constraints on fluid and particle simulations. For instance one very
interesting fluid simulation is that of Graves and Jensen 18 , which
models a simple one dimensional fluid of electrons and ions in a dc
or rf discharge. To get a single steady state solution (or in the rf
case, a solution periodic with the rf frequency) takes about ten
hours of computing on a Cray 1, with what is admittedly a very
unoptimized code. However even in the case of Ref.(18), there are
eight dimensionless parameters. To scan this sort of space, where
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each point is such an involved calculation, is probably out of the
question, even with an optimized code and a supercomputer on the
head of a pin (manufactured with plasma processing!).

Particle simulations face probably more such difficulties.
First of all, the particle simulation has many disparate time scales.
The shortest is probably the inverse electron plasma period, and a
simulation typically needs about 5 time steps per cOpe - 1. Thus the
time step is about 10- 1 1 seconds for a plasma with electron
density 1011cm- 3 . On the other hand the ion neutral collision time
for a room temperature ion in a 0.1 Torr plasma is about 10-5
seconds. Hence just to simulate a single ion collision could take as
many a million time steps. In practice, either time scales have to be
artificially compressed, or else different physical processes have to
be approximated. Another difficulty with simulations is that they
are inherently dynamic, that is a set of particles starts out at time
t=0 and then evolves. As just pointed out, the time scales of the
simulations are microseconds, or perhaps as little as hundreds of
picoseconds. However processing plasmas are steady state, or are
adiabatically evolving if they are affected by the plasma-workpiece
interaction. The industrial process is typically on for minutes or
hours. Thus to be useful, a simulation must evolve toward a steady
state, which it might or might not do, depending on the
circumstances.

The point of this is not to disparage particle or fluid
simulation, which clearly must play a crucial role in the modeling of
plasma processing. Not only is the actual theory very complicated
complicated, requiring extensive computation; but keeping track of
dozens or hundreds of reaction channels requires a tremendous
amount of bookkeeping which can only be done numerically. However
this memo emphatically make the case that there is an important
role for analytic theory also. Analytic theory can give not only
scaling laws, which can reduce the dimensionality of the parameter
space, but can give important understanding of physical principles.
This does not appear to exist in compact form in other sources.

For instance collision processes are discussed in literally
dozens of texts. However there does not seem to be a single source
which puts together the information on collisions and kinetic theory
relevant to processing plasmas. This is attempted in Secs.2-5 of
this report. Scaling is an important concept in plasmas, and in
discharge theory, E/p (the electric field divided by the neutral
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pressure) is often regarded as a scaling parameter. However this is
not always the case; the requirements for scaling laws are given in
Sec.6. A description of the plasma is greatly simplified if a fluid
approximation is valid. However, derivations of fluid equations,
including transport, for partially ionized plasmas are not easy to
find. This is discussed in Sec.7, which relies heavily on Ref.(5).

Where fluid equations are used to describe processing plasmas,
they are usually simplified to the point that their singular nature is
swept away. However this singularity is responsible for the sheath
transition. The derivation of it, as well as an approximation for the
neglect of the singularity, is described in Sec.8. Sheaths themselves
are a complicated and important part of processing plasmas. One
experimental fact, known for decades, is that the anode and cathode
sheaths of a dc glow discharge are very different from one another,
the latter being inherently collisional. This author has not found a
simple explanation for why this is so. For instance why is the
cathode voltage drop so much greater than what is required to
electrostatically exclude electrons? An explanation does exist and
is given in Sec 9. Thus there are important analytic insights and
scaling laws which must complement more detailed numerical
simulations.

Now we will very briefly discuss some industrial plasma
processes, to see what direction they drive the theory. We will
start with integrated circuit fabrication, described more fully in the
cited books. Typically the challenge is to etch a precise pattern into
a silicon or silicon dioxide substrait. Atop the silicon wafer is a
mask which has the pattern in it. One would like to expose the
covered wafer to something that the cover is impervious to, but
which eats away at the silicon. In the early days of integrated
circuit fabrication, the etch was usually done chemically. However
as characteristic sizes were reduced over the years, chemical
etching became less and less satisfactory. For one thing, chemical
etching is typically isotropic, so that the mask is undercut by the
etch. As tolerances became tighter, this became unsatisfactory
since one line etched into the silicon would run into its neighbor.
The solution for these narrower line widths, has been to use a
plasma etch. The plasma has two advantages, first it produces the
etch material in a dry environment, and secondly, the etch is
anisotropic, so the trench edge is nearly vertical. To etch silicon,
one would like to produce an etch material that reacts chemically
with silicon to produce a volatile substance which can be pumped
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away. Typically this is SF4, which is gaseous. In wet etching,
usually a very corrosive material like HF is used to produce this.
One great advantage of the plasma, is that electron collisions
produce not only charged particles, but also free radicals like
atomic fluorine. When they strike the workpiece however, they
react very strongly. These free radicals, which do not exist long in
liquids or high density gases, can be readily produced and maintained
in the plasma environment because the electrons of the plasma have
more than enough energy to generate them. However the electrons,
while energetic compared to the background, have such low density
that they do not appreciably increase the energy content of the
entire gas. Thus a plasma gives rise to the possibility of high
energy density chemistry at low gas energy density.

Now let us consider the anisotropic nature of the etch. The
workpiece is exposed not only to the neutral free radicals, but also
to the streaming ions which form the plasma sheath. The nature of
this sheath is controlled mostly by the bulk plasma and the external
circuit. If the sheath is reasonably collisionless, the ions and fast
neutrals impinge perpendicular to the workpiece. Thus the bottom of
the trench will be struck by the ion flux, and the side walls will not
be. Thus one possible description of the etch process is that the
free radicals react with the silicon to produce a polymer which
adheres to the silicon walls and protects the silicon against the
etch. However on the bottom, the delicate polymer cannot stand up
to the stream of ions and fast neutrals, so the etch occurs and the
volatile product is formed and pumped away.

The plasma etch has worked well for separations of above a
micron. However with the thrust to quarter and half micron feature
separation, existing plasma etch technology is not expected to work
as well, and no other scheme other than a more advanced plasma
process seems to be on the horizon. While the total process just
described involves complicated aspects of surface and gas phase
chemistry, the plasma is important also. Specifically we would like
a plasma theory to be able to predict the production of free radicals
as well as the flux and energy spectrum of fast ions and neutrals to
the surface. At low density, the gas chemistry depends mostly on
the electron distribution function; and in the cases where a fluid
model for the electrons apply, on their density and temperature. The
flux and spectrum of fast ions and neutrals to the workpiece depends
crucially on how the plasma sheath is set up. These then are the
sorts of answers we want from plasma theory, and the sorts of
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scalings and physical principles we want from analytic plasma
theory.

Another area for which plasma processing has turned out to be
very important is the deposition of thin diamond films3 9 -43 .
Diamond has remarkable properties regarding hardness, as well as
thermal and electrical properties. Until recently, they were
available only through natural mining, or high temperature, high
pressure compression of carbon. In the last ten years it has been
discovered that diamond films could be deposited on substraits by
plasma chemical vapor deposition as well as other low pressure
means. This then is the opposite of the plasma etching, here the
plasma is needed to add an additional layer to a substrait.

The actual deposition precess is very complicated and does not
seem to be well understood at this point. If a layer of carbon is
deposited on a substrait, the energetically favored form is graphite,
not diamond. However since the particle stream impinging on the
substrait is quite energetic, there is sufficient energy flux to form
the less favorable diamond structure. Typically, a large fraction of
the deposited carbon is in graphite form, and a much smaller part of
the deposited carbon is in the diamond structure. The idea then is to
eat away the graphite as rapidly as it builds up, so that what is left
is a diamond film. This is done in two ways, first by heating up the
substrait to keep it less hospital to graphite and more to diamond,
and second to have a flux of free radicals on the substrait. The flux
of free radicals also eats away at the graphite. It seems certain
that the flux of free radials is sufficient, since diamond deposition
is observed in plasmaless systems such as acetylene torch
deposition systems. However the diamond deposition might be
enhanced with an ion flux as well, and furthermore free electrons in
the plasma can be a source of free radicals as well as ions.

The original plasma deposition experiments were done with
combinations of CH4 and H2 as the fill gases. Typically the maximum
diamond deposition rate is about lgm per hour, which maximized
when the CH4 mole fraction is about 2%. For much higher CH 4
concentration, diamond films do not form. Possible free radials that
can form include H, CH3 as well as other hydrocarbon radicals. Since
the CH 4 is the only source of the diamond, it is apparent that much
more free radical than pure carbon is required. More recently4 3,
diamond films were deposited for fill gases of CH 4 and 02. Here
possible additional free radicals include 0 and other oxygen
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compounds. For this CH4-02 plasmas, it was found that diamond
deposition was both faster and the quality of the diamond film was
higher. Deposition rates in excess of 5jgm per hour were observed.

For the case of diamond deposition, the plasma seems to play
the role of a source of free radicals. These free radicals can only
come from electron interactions with the background gases. Thus
what one needs from a theoretical model is the electron density and
temperature (or electron distribution function if the electrons are
not Maxwellian) and the free radical production The electron density
and temperature are derived from the basic plasma physics and the
coupling of the plasma to the external circuit. The times necessary
for reasonable film deposition (hours), also emphasizes the
necessity for steady state plasma theory

Finally we will consider the case of Plasma immersed ion
implantation (Plll)3,44. Often one has a metal, a tool for instance,
and one desires to implant guest ions up to a certain depth in the
metal, for surface modification. For instance nitrogen is often
implanted in steel to harden the surface, and/or to reduce the
surface friction. To implant the nitrogen to the necessary depth, it
must be driven into the metal at energies of typically 100 keV and
higher. At first one might think an ion accelerator would be
required. However this has disadvantages in that the ions all are
accelerated in one direction and the workpiece might not be planar.
An alternative would be to put the workpiece in a plasma and pulse
it with a negative voltage pulse. Then ions will be accelerated from
the plasma into the workpiece. As long as the object is large
compared to the plasma sheath, the ions will be accelerated
perpendicular to the surface. We would like a plasma theory to tell
us the ion dose in terms of the plasma and external circuit
parameters.

The theory we work out in this report is guided by what appear
to be the needs for the plasma processors just described. One of the
most intimidating things about processing discharges is that they
are not only collisional, but there are an enormous number of
different species, collisional and reactive processes. For instance
Plumb and Ryan4 5 , used 49 reactions to model the gas phase
chemistry of a CF 4/0 2 discharge. The next four sections review
collision and reaction processes in processing discharges. The
description of the microscopic collisional and reaction processes
are themselves complicated quantum mechanical calculations which
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we will not get into here at all. We will assume that cross sections
for the appropriate processes are known and the theory we work out
will be in terms of these cross sections. Section 2 reviews the
basic physics of simple collisions. The next problem is the kinetic
theory of a gas of particles with no internal structure, but which
interact with each other via binary collisions. This is described in
section 3. There, there are relations between each collision process
and its inverse which have important implications for the
equilibrium theory. For the case of collisions of particles with no
internal structure, these relations are not difficult to see from the
basic collisional descriptions. The case of particles with internal
structure are described first for the case of atoms in Section 4. As
the particles have more and more complicated internal structure,
relations between the collision and its inverse become less and less
obvious. However these relations are still necessary in order for
equilibrium statistics to hold. An alternative is to postulate
equilibrium statistics (the validity of statistical mechanics really),
so that the relation between the collision and its inverse is imposed
in that way.

Section 5 discusses a molecular plasma. This gets even more
complicated because now there is chemistry as well as excitations
and ionizations. We consider a fairly simple molecular plasma, but
one still of importance in processing discharges, the oxygen plasma.
The free radical is now atomic oxygen. This can be produced for
instance by electron collisional dissociation of oxygen molecules.
There appear to be two tractable limits, the low density limit where
the chemistry is dominated by electron two body reactions, and the
very high density limit where the plasma is nearly in thermal
equilibrium. For intermediate densities, where 2, 3, 4 or many
particle interactions are important, appears to be very complicated.
For the most part we consider the low density limit. For this
plasma, there are still a large number of possible components. Even
neglecting atomic and molecuiar excited states, which are often
important, there are still six components, 02, 0, 02+, 0+, 02, and
electrons. The number possible of reaction channels is huge.
Limiting the reaction rate to below a particular value, we find nine
possible reactions, so that there can be different reaction chains
which start and end at the same place. For thermal equilibrium to
hold, there must be relations between these seemingly independent
reaction rates. For the homogeneous plasma with rate equations
specified, one thing that is not difficult to see, is that low density
equilibrium atomic and ionic distributions reasonably like those
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measured, are not possible. Thus the distributions are determined
by more than the chemistry. As we will see, the plasma physics
must play a crucial role also.

The full processing plasma is described by the Vlasov equation
for all species coupled to Maxwell's equations for the fields. These
are much too complicated to solve, or even simulate. However for
plasmas dominated by binary collisions, there are scaling laws,
which in some cases can relate solutions to one another. This is
described in Section 6.

Solving the Vlasov equation involves following the time
dependence a function of 6 variables, three velocity dimensions and
three position dimensions. A fluid formulation however has only
three spatial dimensions, so if there is any justification for it, it is
greatly simpler than a Vlasov formulation. The fluid formulation for
the charged species in the presence of the neutrals is derived in
Section 7. Wherever possible, we use a fluid formulation in the
cases treated here.

Typically most of the plasma volume is quasi-neutral and
there is not large charge separation between the electrons and ions.
Thus is is very convenient to make an assumption of quasi-
neutrality in the bulk plasma, and this simplifies the fluid
description further. However near walls, the quasi-neutrality
approximation breaks down and charge separation becomes
important. This breakdown manifests itself in the steady state
quasi-neutral solution by the presence of a singularity4 6 -4 8 . This
singularity signals that the quasi-neutral central part must
transition into a non-neutral sheath. This can be a very complicated
mathematical problem, although in the cases discussed here, it turns
out to be not too difficult. Typically the sheath width is very small
compared to the other lenghts in the plasma, including the mean free
path. Thus a fluid model is not necessarily valid for the sheath.
However there are often other simplifications, for instance the
neglect of collisions or a one dimensional structure. This is
discussed in Section 8.

Finally Sections 9 and 10 discuss specific plasma
configurations, the dc and rf discharge. They show how the quasi-
neutral part couples to the sheath and how mass, momentum and
energy are coupled from the external circuit to the plasma.
Typically energy is coupled into the bulk of the plasma from the
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circuit, although there are mechanisms to couple in through the
sheath also for rf plasmas. Energy that is not radiated away or lost
to neutrals is convected out through the sheath. Thus the sheath
physics must be known in order to calculate the energy balance.
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2. Particle Collisions in Processing Discharges

Since processing discharges are weakly ionized, the most
important collision processes are those with the background neutral
gas (and also of course with the walls of the discharge). Here we
briefly review the basic binary collision processes. Many different
types of elastic and inelastic collision processes are important at
one time or another, particularly, and we will generally describe
these as they become necessary. First we consider binary collisions
between two particles labeled with subscript a and b. The initial
velocities are Va and Vb, and the masses are ma and mb. The center
of mass velocity is given by

Vo = (maVa +mbVb)/(ma+mb) (2.1)

and the relative velocity is given by

v = Va - Vb (2.2)

Velocities after the collision are denoted by primes. If the energy
change in the collision is denoted by AE, corresponding to a change of
an internal state of one of the colliding particles, conservation of
momentum and energy gives the result

vo- vo, !iv 2/2 = tiv' 2/2 + AE. (2.3)

where g. is the reduced mass mamb/ma+mb. For the case of light
particles colliding with heavy particles, as is the case for electron
atom collisions in a processing discharge, the reduced mass is very
nearly the electron mass. For an atom and an ion of the same
species, it is half the mass. Thus, according to Eq.(2.3), the change
of internal energy can come only from the motion about the center of
mass. If the two input velocities Va and Vb are known, conservation
of momentum and conservation of energy (assuming AE is specified)
give four of the six unknown velocity components for the particles
after the collision. We define the other two components in terms of
two collision angles. In the center of mass frame, each particle is
scattering from the fixed center of mass. Each particle then
scatters through an angle e in this frame. The orientation of the
scattering plane with some fixed plane defines another angle 0.
These two angles then completely define the scattering problem.
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Look now at the orbit of particle a with respect the center of mass
position. The initial orbits are antiparallel lines displaced from
each other, and the center of mass position is somewhere between
these lines. These line define a plane. As long as the force between
the particles is a central force, the particles, as they scatter from
one another never leave this plane. The minimum distance of the
linear orbit of for instance particle a from the center of mass
position defines an impact parameter b. The particular interparticle
potential then determines the scattering angle 0 in terms of b. Of
course this scattering angle is a function of center of mass velocity
v. The relation between b and 0 defines the scattering cross section
as

a(0,v)sin0d6 = bdb (2.4)

Here a(0,v) relates the flux of exiting particles scattered into a unit
solid angle to the flux of input particles incident at a particular
impact parameter. Almost always published graphs of scattering
cross section are integrated over angle, so that what is shown is
perhaps Jo(O,v)dQ, for estimates of total number of collisions, or
Jfa(0,v)(1-cos)d! , for estimates of momentum or energy change.
Here i denotes solid angle.

In an elastic collision (AE=O), Eq.(2.3) shows that the
magnitude of the relative velocity of the two particles remains the
same before and after the collision. Thus the relative velocity
simply rotates through the angle 0 in the scattering process. One
can easily calculate that the change in momentum of particle a is

Apa = -I1(1-c0s 0 )(Va-Vb) (2.5)

A straightforward calculation of the energy change of particle a
gives the result

AKa = -k(1-cos0)[2Ka-2Kb + (mb-ma)VaOvb] (2.6)

where

k = [p./(ma+mb)]
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Notice that if the masses of the particles are very different, as with
the case of electrons (b) and atoms (a) in a processing discharge, the
change of momentum can be comparable to the incident momentum
whereas the change in energy is reduced by roughly a factor of
2mb/ma. Thus in a plasma, temperature equilibration is generally a
much slower process than say momentum exchange. This is the
reason that processing discharges can can be nearly in equilibrium
even though the gas and ion temperature is much less than the
electron temperature. The ion and gas temperatures are nearly equal
however.

Let us now calculate the force between electrons and atoms in
a discharge if they have an average drift with respect to one
another. This is

Fe = -. ifd3ved 3va nenafefa(ve-va)vYap(v) (2.7)

where

ap(V) = JdQa(e,v)(1 -cose) (2.8)

where ne is the electron number density, fe is the electron
distribution function normalized to unity over velocity, and
analogously for atoms. Since momentum is conserved, there is an
equal and opposite force on the atoms. To evaluate the integrals,
one would have to calculate the magnitude of the relative velocity in
terms of Ve and Va. We do this in Section 6 where fluid equations are
derived, and assuming a farily simple collision model. A similar
calculation for the kinetic energy exchange between isotrooic
distributions electron and atoms (corresponding to temperature
equilibration) is given by

Ke' = -kJd3ved 3va[2Ka-2Ke+(me-ma)va-vb]nenava(v) (2.9)

with an equal and opposite term for the atoms. We evaluate this
also in Section 6.

Of course there are many other processes going on besides
elastic collisions. For instance there is dissociation of molecules,
excitation of all species, production of metastables, ionization etc.
Since the electrons are the energetic species in processing
discharges, electron collisions are the source of virtually all such
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processes of interest. An important exception is the generation of
fast neutrals. Since electron collisions cannot energize heavy
particles, these are produced by ions accelerated in the sheath
regions followed by charge exchange collisions. The study of such
collision processes is a large subject. For the purpose of the plasma
physics of such discharges, we take as given the cross sections of
the processes involved, and discuss other separate processes where
they become necessary. Important cross sections are tabulated in
many places. Usually the cross sections are given as integrals over
angle, so they are given as functions of energy alone.

Once the cross sections are given, the rate for the process can
be calculated. For instance let us say the process of interest is the
ionization of background atoms by electron impact.. The impact
ionization cross section is then given as some function of v. The
rate at which ions are produced by impact ionization is then given by

ne' = Jd3vnenavai(v)fe = ai(Te)nena (2.10)

Since it takes some minimum energy to impact ionize an atom, the
electron temperature must be sufficiently high, or else there will be
very little ionization. However the temperature can be less than the
ionization energy, because higher energy electrons in the electron
distribution function can still provide significant ionization. Let us
anticipate the result that the electron distribution function is
Maxwellian. Then take the relative velocity between the electron
and atom to be equal to the electron velocity. The ionization cross
section is usually linear above the ionization threshold and falls off
as roughly E- 1 at high energy. An approximate formula for ionization
cross section as a function of energy is

ai=l 6aoEi(E-Ei)/E(E+8Ei) (2.11)

which maximizes at a value of 0o at E=4Ei. Then for temperatures
low compared to the ionization energy, the expression for a(Te) can
be written as approximately

oi(Te) = [16ao/9][8Te/m1l/ 2exp-(Ei/Te), Ei/Te<<l (2.12)

In an atomic plasma, inelastic collisions consist of electronic
excitations as well as ionization and ionization. An analogous
calculation can be performed for the excitation rate, and for
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temperatures low compared to the excitation energy, one arrives at
an expression like Eq.(2.12). Usually these excitations are
considered as separate states and the excitation rate for the
particular states are calculated as above. Molecules on the other
hand have both rotational states (excitation energy of typically 10-
4-10-2 ev) and vibrational states (excitation energy of typically 10-
2-1 ev). While these might be considered separately like electronic
excitations, it is generally simpler to consider them as an additional
energy drain on the electrons, expressed in terms of an effective k
which at certain electron energies may be much larger that the k for
electron ion collisional energy exchange. For instance for N2 at
about 1 ev, k can be as large as 10-1. Thus the excitation of
molecular vibrations can be an appreciable drain on the electron
thermal energy.
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3. Kinetic Theory for Particles with No Internal Structure

Let us assume that the processing discharge we are
considering has mostly atoms, but also electrons and ions. To
simplify further, the particles are assumed to have no internal
structure, so they are point particles interacting with external
fields and also with each other through binary collisions. Since the
particles have no internal structure, conservation of energy and
angular momentum decree that the collisions are elastic and the
internuclear force is a central force. Thus that the interaction is
described by an internuclear potential which depends only on
particle separation. The distribution function for each particle
species is determined by the Vlasov Equation for that species

afa/at + VoVfa + (ea/ma)[E+vxB/c]eVvfa = Caa+Cab+... (3.1)

Where the C's on the right hand side denote the contributions to the
change in fa due to the binary collisions specified. Also, in Eq.(3.1)
above, the distribution function fa is normalized to local number
density rather than unity. Generally with no collision term, Eq.(3.1)
is referred to as the Vlasov Equation; with the collision term, the
Boltzmann equation. We will use the terms interchangeably here.

We concentrate primarially on the collision terms. When
particle b collides elastically with particle a, particles with
velocity Vb are lost from the distribution function fb. As calculated
in the previous section, the rate at which particles are lost in a
phase space volume d3vd 3x is

afb/Dt(out) = -ld 3vadQcv(O,v)vfafb (3.2)

In Eq.(3.2) above the integral over va is an integral over all the
particles that the particle in question might collide with; here the a
subscript might mean a particle of another species, but it also might
mean a particle of the same species that collides with particle b and
knocks it out of its velocity cell d3 v. Note that it is not necessarily
obvious from Eq.(3.2) that momentum, energy, or even particle
number is conserved. We only know that they are, by our assertion
that only elastic collisions between particles with no internal
structure are involved, a fact not at all obvious, or even true from
Eq.(3.23.2) alone. In fact Eq.(3.2) could also be used to describe
inelastic or ionizing collisions.
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To show things like conservation of momentum and the like, as
well as to complete the description of the collision integral, we
must also calculate the rate at which particles are scattered into
the velocity cell d3v centered at Vb. This is

olfb/otd 3 vb(in) = Jd 3 vb'd 3 va'u'(0',V')V'fa'fb' (3.3)

where we have denoted with primes the value of the velocities of
particles a and b after the collision. The integral over d3vb'd 3 va' is
over only that three dimensional portion of the six dimensional
double velocity interval which places the final velocity of particle b
within d3vb of vb. To proceed, we relate various before and after
collision values. First of all, as we saw in the last chapter. The
primed parameters are those velocities which give velocities va and
vb after the collision. As we saw in the last section, the magnitude
of the relative velocity does not change before and after the
collision, so that v=v'. Then for Va' and Vb', we take the final
products of the initial a:b collision. At this point it is simplest to
proceed by working in the center of mass reference frame. By
sketching out the path of the particles in the original collision, and
then constructing a collision with the the final velocities as
incident velocities and with the same impact parameter, it is not
difficult to see that the two collisions are the same except for
rotations and reflections of the entire collision. Since the assumed
central force is independent of such rotations and reflections, the
cross section is the same and so is the magnitude of the scattering
angle. Thus Finally, let us consider the sizes of the
velocity elements d3vad 3vb. By expressing the collision parameters
in terms of center of mass variables, the center of mass velocity is
unchanged in a collision, so d3 vo = d3 vo'. Since the change in velocity
about the center of mass is simply a rotation, d3v = d3v' since
rctations preserve volume elements. Thus the expression for the
total change of fb, afb/Zt(in)-'fb/ t(out) becomes

Cba = -8abJd 3 vad -  O(O,v)v[fafb-fa'fb'] (3.4)

where 5 ab=1 if a~b and 8ab= 1/2 us a=b. It accounts for the fact that
if a=b, each collision is counted twice if the factor of 1/2 were not
present. In order to simplify the notation, we usually will not
specifically include the factor separately unless it is specific ally
required to avoid confusion. Equation (3.4) is the Boltzmann
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collision integral for particles with no internal structure. The
prime in the second term in the brackets means particle which
collide into velocities Va and Vb.

There are several properties of the Boltzmann collision
integral which can be easily easily proved. First of all, if f is
initially positive everywhere, it stays positive. If fb is positive and
were to go negative, it would first have to be zero at some velocity.
However if fb=O at this velocity, Eq.(3.4) shows that Cba is greater
than zero, so that fb would become positive at subsequent times. It
is also not difficult to show that the Boltzmann collision integral
conserves mass, momentum and energy in the plasma. If Yb denotes
a component of momentum, mass or energy of the particle b, the
collisional rate of change of Y is

Y'= -Jd3vad 3vbYbdEa(O,v)v[fafb-fa'fb'] + b--*a (3.5)

where Y' is the total change of the quantity summed over both
colliding species, a and b. If we consider the change within a
species, the same logic applies. The integrand is symmetric with
respect to changing a and b so the b a term can easily be
incorporated into the integral. Now since va and vb are simply
variables of integration, we can label then as va' and vb' in Eq.(3.5).
Then, using the fact that for the elastic collision between particles
having no internal structure, d3vad 3vbdKov=d 3va'db'dQV'v ' , as we
have just shown, we find that

Y' = -jd3vad 3vbdQvo(O,v){Ya+Yb-Ya'-Yb'}[fafb-fa'fb'] (3.6)

However the term in the bracket {} is simply the sum of the mass,
momentum or energy before and after the collision in question.
Since mass, momentum and energy are conserved in the collision,
this bracket vanishes, thereby proving that mass, momentum and
energy are conserved for the entire plasma by the Boltzmann
collision integral.

Next we prove the Boltzmann H theorem, essentially a proof
that entropy increases until the plasma reaches an equilibrium
state. We define the quantity H as

H = -XbJd 3vb fblnfb (3.7)
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By multiplying the Boltzmann equation by Infb and integrating over
velocity and space, one can get an equation for the total change of H
over the entire plasma. Let us first consider the convective terms.
Since [Vfb]lnfb is the gradient of a function of fb,Z(fb), (Z(f) =
(1/2)f 2lnf-(1/4)f 2 ), the integral over space vanishes as long as the
plasma is isolated so that the boundary terms in the spatial integral
vanish. If the terms do not vanish, then there is a flux of H (an
entropy flux actually) into the system from the boundary, which we
do not consider here. The contribution to dH/dt from the EoVvfb
vanishes for the same reason, except that now there is no
possibility of an end point contribution in the velocity integral since
f-O and v-40. The contribution from the magnetic term is
proportional to Jd3vb(vxB)°VvZ(fb) which also integrated to zero over
velocity since the velocity gradient of the cross product in front
vanishes. Thus a collisionless plasma conserves H as long as there
are no fluxes in from the boundary.

We now consider the collision terms. By the same logic as was
used in the derivation of conservation of mass, momentum and
energy, we find that

dH/dt = 0. 2 5 7,ab Jd3vad 3vbd.2vo(0,v){In[fa'fb'/fafbl[fa'fb'-fafb] (3.8)

Since the f's are everywhere positive, the integrand is positive
everywhere also. Thus the conclusion is that dH/dt is always equal
to or greater than zero. Note however that an important step in this
proof is the summation over species a and b. "he H of one component
does not necessarily increase, a decrease of Ha might be balanced by
a larger increase of the H of the interacting component Hb. However
the total H increases. Correspondingly, the contribution to dH/dt of
a species through its self interaction also increases Of course H
cannot increase without limit because f integrates to unity over
velocity; where f is near zero and In f is large, flnf is of course still
small since Inf diverges to minus infinity very slowly as f
approaches zero. The one case where f can be very large is if f is
nearly a delta function in velocity. If 8 denotes the volume of

velocity space for which f*O, H is roughly equal to -ln8. However
here H goes to minus infinity, not infinity. This is the least likely
state for the plasma according to the H theorem. Since H increases
or else vanishes, and it is bounded from above, the plasma must
evolve toward a state in which H'=O.
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Hence the H theorem allows one to derive an equilibrium
distribution function for the plasma. We begin by considering the
case of a homogeneous plasma with no external forces. Clearly af/at
will vanish as long as

fafb - fa'fb' =0 (3.9)

or as long as

Infa + lnfb = Infa' + Infb' (3.10)

Recall that a and b denote particle parameters before a binary
collision, and a' and b' denote the values after the collision. Thus
the natural log of f must be one of the quantities conserved in the
collision. There are three and only three such quantities so
conserved, the mass, momentum and energy. Thus the equilibrium
distribution function must be

fb(v) = nb(mb/2nT) 3/2 exp[-(mb/2T)lv-ul 2 ] = nbfmb (3.11)

Notice that T (the temperature or 2/3 of the thermal energy) and u
(the average velocity) have no subscript. These values must be the
same for the each species of the plasma if it is to be in thermal
equilibrium. The constants in the distribution function are chosen
so that when integrating over the velocity, the result is the density
nb. The thermal energy of the species Wb is obtained by integrating
1/2mblv-u1 2 over the distribution function, giving Wb = 3nbT/2.

To conclude, we consider the equilibrium distribution function
for a non flowing species of plasma in an external force. For
convenience, we will take the case of charged particles in an
electrostatic potential. As we have seen, a local Maxwellian
distribution function is a thermal equilibrium distribution function
as long as interparticle collisions are the only thing taken into
account. We then consider what spatial dependence will render the
Maxwellian distribution an equilibrium distribution in the external
field. That is we consider a distribution function of the form

fb = nb(r)fmb (3.12)

Because the velocity distribution is considered to be Maxwellian
(with the same temperature for all species), the collision term in
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the Boltzmann equation vanishes. Thus if a density can be

determined so that

voVnbfmb - nn(eb/mb)V4).Vvfmb = 0 (3.13)

the equilibrium distribution in the external force can be obtained.
One can easily show by direct substitution that an nb can be found
and is

nb= nboexp -ebI/T (3.14)

where nbo is the number density of species b at 0=0. For a single
species, getting the distribution in an externally provided
electrostatic potential is not difficult as we have just shown. For a
plasma which comprises several species of very different masses
and positive and negative charges, the thermal equilibrium
distribution function in the external field can be considerably more
complex if it exists at all. If the electrostatic field is itself
generated by the charge separation in the plasma, and the charged
species in the plasma are ions and electrons, we must have

V24 = 4ne(ne-ni) (3.15)

as well as Eq.(3.14) for thermal equilibrium. Notice that in a falling
potential, the electron density decreases while the ion density
increases. The decrease of electron density with decreasing
potential results from thermal electrons being reflected from the
potential, so there are fewer electrons at low potential than at high
potential. There are certain cases in a plasma where this is a valid
description of the equilibrium; however more often it is not,
particularly for the ions. In ion sheaths, the ions typically stream
into the falling potential of the sheath from the bulk plasma. The
ions, in contrast to the electrons accelerate as a fluid. Hence, as
the ions speed up in the sheath, their density drops. As we will see,
the fact that the electrons and ions have very different masses and
opposite charges usually means that if there are electric fields
present, at least one species is out of equilibrium.
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4. Kinetic Theory and Rate Equations for Atoms

In this section, we extend the kinetic theory calculations to
the cases where the particles do have internal structure. We
consider the case of atoms since their internal structure is the
simplest, there being no rotational or vibrational states of the
particle. However there are atomic excitations and as well as
ionization. We first consider the case of excitations alone. In the
binary collision, particle a has excitation energies E(aj), where the
index j denotes the various atomic excitations. The distribution
function now has an additional index j to account for the excitation
state of the particle.

To derive the kinetic equation for the case where the particle's
have internal degrees of freedom, we follow the procedure of the
previous section. Specifically, Eq.(3.2) still applies and the rate of
particles of species b and internal energy E(bj) scattered out of the
region of velocity space is

afbj/ot(out) = -,id 3 vad a(6,v.E(b,j),E(a,i))vfafb (4.1)

The particles scattered in are given by

afbj/ot(in)d 3 vb = Xi-j'd3 vad 3vboG'(',v',E(b',j'),E(a',i'))v'fa'fb ,  (4.2)

The integral over velocity variables and summation over i'j' in
Eq.(4.2) is only over those primed velocities which put the final
collision products within d3vad 3vb of va and vb after the collision;
and over those i'j' which leave the particle b in energy E(b,j) and
particle a in energy E(a,i).

For the case of elastic collisions of particles with no internal
structure, the relation between velocity interval, relative velocities
and cross sections for the forward and reversed collision provided
crucial information which simplified the collision integral and
verified Boltzmann statistics. This no longer holds true for the
individual factors in the integral for the case where the atoms have
internal structure. For instance v (recall it is the magnitude of the
relative velocity in the center of mass frame) is no longer constant
in an inelastic collision, which implies also that d3 v =[v 3/v' 3 }d3 v'.
Thus the individual equalities no longer hold true for the inelastic
collisions. However there is a principle, called the principle of
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detailed balance which says that the rate if forward and reverse
collisions are equal if the populations of the states are equal. This
then dictates that the product of the magnitude of the relative
velocity times cross section times velocity interval is the same for
the forward and reverse process. This is discussed in tests on
Statistical Mechanics. It is a subtle point and is required for
Boltzmann statistics in equilibrium. Using the principle of detailed
balance to relate the rates of the forward and reverse processes, we
find that the collisional contribution to afb/at is

ofbj/at = -,Xiid 3vadfa(e,v,E(b,j),E(a,i))v [faifbj-fai'fbj'] (4.3)

As before, the collisional rate of change of fbj vanishes if faifbj-
fai'fbj'=O, or if Infai +lnfbj = Infai' +lnfbj'. Thus, as before, in
equilibrium, the logarithm of the distribution function is
proportional to quantities conserved in the collision. These are now
the momentum and total energy of the particles, the total energy
now being the sum of the internal energy and the kinetic energy.
Thus the equilibrium distribution function is now given by

fbj = Q(T)1 exp-[E(b,j)/T]fb(v) (4.4)

where fb(v) is the equilibrium velocity distribution given by
Eq.(3.1 1) and

Q(T) = YXj exp-[E(b,j)/T] (4.5)

where the summation is over the assumed finite number of states.
Q(T) is called the partition function and it depends on the
temperature as well as on the way the different internal states of
the system are distributed. Another way of expressing 0 is

Q(T) = ,Xjgiexp-[E(b,j)/T] (4.6)

where gj is the number of different states with energy E(b,j) (that is
the degeneracy of the state), and the summation (with the star) in
Eq.(4.6) is now over distinct energies rather than over distinct
states. The quantity gj is also called the statistical weight of
energy state E(bj). Thus the principle of detailed balance allows us
to write the collision integral for the case of inelastic collisions in
a way that the Maxwell Boltzmann statistics of the equilibrium can
be derived. Alternatively, one might postulate Maxwell Boltzmann
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statistics for the equilibrium, and use this 4- ,derive the principle of
detailed balance for the particular kinetic "' dory studied.

Let us briefly consider Q(T) It is a summation over all of the
states or over all of the energy states multiplied by the statistical
weight. The energies of the bound states are within some range
from the minimum energy to the ionization energy. However because
the Coulomb force is very long range, there are an infinite number of
bound states.. Thus the summation in Eq.(4.5) diverges if the
summation is actually taken over all states. However there is some
practical upper limit to the number of states. For instance for
hydrogen atoms, the radius of an atom of principal quantum number p
is roughly p2ao, where ao is the Bohr radius, about 5xl0-9 cm. When
this radius is about the interion separation, ni-1/3, the excited atom
is no longer a distinct particle 4 9 . For an ion density of about 1012
cm -3 , this is about the hundredth excited state. Furthermore, the
ionization energy of this excited state is about 0.001ev, well below
room temperature. Thus this excited state will surely ionize by
interaction with the neighboring ion. (As discussed in Ref(49), there
is little interaction between an excited ion and an atom whose
wavefunction it overlaps, so the ion, rmther than atom density is the
appropriate density to use in calciwiating the maximum value of p.)
Hence, for states above sorie maximum level, the excited states
become in many ways indistinguishable from ionized states. This is
the maximum excited statp which the summation in Eq.(4.5) should
be carried to. As long as the temperature is sufficiently below the
minimum excitation energy, the fall off in the size of each term will
compensate for any uncertainty in number of terms to retain.
Equation (4.5) for the distribution of excited states is most accurate
for low temperature where only a small number of excited states
are relevant.

We digress briefly to discuss molecular plasmas. Here there
are not only electronically excited states, but also rotational and
vibrational states of the molecule. The calculation of the partition
function and the associated partition of the molecules among these
states must also be considered. Unlike the case of electronically
excited states, there are only a finite number of rotational and
vibrational states. When the rotational energy becomes too high, the
rotation begins to interact with the inter nuclear vibration. The
binding energy between the nuclei of the molecule is a short range
force, so there are only a finite number of excited vibrational states
of the molecule. To the extent that rotational, vit -.tional and
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electornic states can be regarded as distinct, the partition function
can factored into rotational, vibrational and electronic factors.
From this, one can determine the thermal equilibrium partition of
molecL, ar internal energy into these components 49 ,5 0 .

Let us now consider the ionization of the plasma at higher
temperature still. Here we consider the equilibrium ionization. We
now assume Maxwell Boltzmann statistics. If the ionized electron
ion pair are considered to be an excited state with the ionization
energy, an argument based on the Boltzmann statistics at
equilibrium, and entirely analogous to that above, shows that the
number of electrons, ions and atoms satisfies the relation:

NeNi/Na = [exp-Ei/T]GeGi/Ga (4.7)

where Ei ionization energy and

Ga = X.'jgjaexp -{(Eja-Eoa)/T} (4.8)

for atoms and, with identical definitions for electrons and ions. Eo
is the ground state energy for the species, and we have used the fact
that

Eoi + Eoe - Eoa = Ei (4.9)

The ionization process begins with a fixed atom and ion, but ends up
with an extra free electron. Thus the key is to get the G factor for
the additional free particle produced in the ionization (the electron).
The electron has no internal structure, but it does have a spin, so
there is a degeneracy factor of 2 from the spin. Now we calculate
the Ge factor from the electron. Since the electron is free, it is
highly degenerate and the Ge factor is quite large in nearly all cases.
The electron is assumed to be in a system of length L confined in a
volume V =L 3 . It has wave function

W = exp 2nipor/h (4.10)

and the boundaries impose the quantitization condition Px = nh/L,
where n is an integer, and the number of free electron states within
a velocity space volume d3v is md 3vV/h 3 . Integrating over all
possible electron velocities with the assumed Boltzmann
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distribution, and accounting for the spins of the electrons, we find

that

Ge = 2V(2,cmT) 3/2/h3  (4.11)

so that

neni/na = 2[2nmT/h 2 ]3/2(Gi/Ga)exp(-Ei/T) (4.12)

using the fact that Ni/V=ni. Equation (4.12) is the Saha Equation and
it relates the ionization fraction to the temperature and the internal
atomic structure at thermal equilibrium. Since for most atoms and
ions, Ga=Gi, the Saha equation is often written without the G factors.

Now let us consider several of the ionization and
recombination processes. There may be a great many, but we will
consider only two for atomic systems; impact ionization and the
reverse process of three body recombination, and photo ionization
and the reverse process of radiative recombination. As we have seen
in for instance Eq.(2.12), when averaged over the entire plasma,
impact ionization can be written with as an ionization rate.
Including the two ionization processes and their inverse processes,
the equation for electron density can be written as

dne/dt = ainena - Pine 2 ni + apnal - Ppneni (4.13)

In Eq.0, the subscripts on the a's and P's denote the impact and
photon processes and I is the photon density. In thermal equilibrium,
dne/dt must be zero, so this gives a relation between the a and 3
coefficients. Because there are different functional dependences on
production rate and loss rate depending on the process, in general
there is no relation between say the different 's for the different
processes. However there is always a relation between the a and
the 3 for the process and its inverse, as would be expected from the
principle of detailed balance. This relation always gives the same
functional relation between the densities. For instance, balancing
impact ionization with recombination gives

neni/na = ao/Pi (4.14)

while balancing photoionization with radiative recombination gives
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neni/na = apl/13p (4.15)

This is the same relation as long as xi/pi = axpl/IPp. Of course these
are not the same for any photon density I, however if one assumes
that the photons are in thermal equilibrium at temperature T, then
the ratios will be the same. Thus. at thermal equilibrium, the rate
of the ionization process and its inverse are related by the Saha
equation for all ionization processes.

To demonstrate the utility of the Saha Equation, we use it to
calculate the rate of radiative recombination, which would
otherwise be difficult, in terms of the rate of photoionization,
which can be calculated analogously to the impact ionization,
Eq.(2.12). The flux of photons at frequency v incident on an atom is
the energy density at frequency v divided by hv times the group
velocity c, the speed of light. The cross section for photoionization
maximizes at the ionization energy and then falls off in frequency.
We assume a frequency dependence of ionization cross section as Gi
= Co(vi/v)n for v>vi and zero otherwise. The energy density of the
electromagnetic radiation is given by the Planck spectrum

E(v) = [8nhv 3/c3 ](exp(hv/T)-1 }-  (4.1 6)

Then one can do an asymptotic approximation to the integral in
Eq.(4.16) to arive at result

apl = [8itaoEi 2 Te/c 2h3]exp-Ei/Te

= 4xl 0 23T(eV)Ei 2 (eV)oo(cm 2)exp-(Ei/Te) (s-1) (4.17)

for low values of Te. Here Ei the ionization energy is hvi. Then from
the Saha Equation, we can determine the P3p coefficient as

op = (80o E i2 )/[2(2xm)3/ 2 Te 1/2c 2 ]

= 65ao(Cm 2)E 2 (eV)Te/ 2 (eV) (cm3/s) (4.18)

From the fact the for photo ionization, typically oo= 1017 cm 2 , one
can estimates rate of radiation recombination even for the case
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where the radiation density is far below thermal equilibrium, the
case for most procesing plasmas.

While the ionization rate and recombination rate are, in all
cases related by the Saha equation, this can at times be deceiving
because the most important ionization and recombination processes
might not be inverses of each other. Consider the case of three body
recombination. Using Eq.(2.12) for the ionization rate and the Saha
Equation, one would surmize that the recombination rate coefficient
0 is proportional to Te -1 . However this three body recombination
rate is the rate for recombination directly into the ground state
with no intermediate radiative decays. Another reaction path is for
the atom to recombine into a highly excited atomic state and then
radiatively decay to the ground state. Because the highly excited
state has a very large radius, as we have discussed, these cross
sections can be very large. (Also the lifetime of these states to
radiative decay is is very short, so in a nonequilibrium plasma,
ionization of these states will not be important.) Let us estimate
the 0 coefficient for this process. At low temperature, two
electrons which collide exchange energy of about Te. The closest
these electrons can get to each other is a separation e2/Te, and as
they approach each other, one of them typically stops. If an ion is
within this distance of the electron that nearly stops, the electron
can form a highly excited bound state of the atom. The
recombination rate then is the two particle collision cross section
ne 4 /Te 2 times the density of electrons n, times the relative
electron velocity, (Te/me) 1 2 , times the probability that an ion is
within the interaction region, nn(e 2/Te) 6 . By using the average
radius of an excited atomic state, the quantum number squared
times the Bohr raduis; and the energy of the state compared to the
continuum, the Bohr energy divided by the quantum number squared,
we see that the state after collision is generally bound. Thus the
three body recombination rate into highly excited atomic states is
approximately

p(cm6/s) = el 0 /(meTe 9 )1/2 = 4x10- 2 7 Te-9/ 2 (eV) (4.19)

Thus for low temperature plasmas, the three body recombination
rate via the formation of highly excited states can greatly exceed
the direct three recombination rate into the ground state.
Comparing Eqs.(4.18) and (4.19), we see that radiative recombination
dominates three body recombination as long as

28



nTe-4 < 1012, (4.20)

the usual contition for processing discharges. To derive Eq.(4.20),
we have assumed Ei =10 eV and 0 =10-17 cm 2 .

Whether the plasma is in thermal equilibrium or not will
depend on the rates and densities as well as other properties of the
plasma. For instance if the plasma boundary is transparent to
photons and the optical depth of the plasma (the size of the plasma
compared to the photon mean free path) is low (as is nearly always
the case in processing discharges), the photon density could be well
below its thermal equilibrium value. Also, at sufficiently low
electron density and sufficiently high electron temperature, the
radiative recombination can greatly exceed any three body
recombination. If this is the case, the equilibrium density is
determined by

ni/na = p/xi (4.21)

which is called coronal equilibrium. In coronal equilibrium, the
fractional ionization depends only on the temperature. Actually,
since impact ionization rate and radiative recombination rate depend
on the relative velocity of the atom or ion with the electron, the
coronal equilibrium condition does not necessarily depend on the
plasma being in thermal equilibrium. If the electron temperature is
much greater than the ion temperature, as is usually the case in
processing discharges, the coronal equilibrium depends only on the
electron temperature, since the electrons are the controlling
species.

Processing discharges are rarely in thermal equilibrium. In
fact, because the electron (and therefore ion) density is usually very
low, it is not often that recombination is an important process at
all. More often, impact or photo ionization, or ionization from the
impact of fast particles on the wall are the important processes,
and the loss mechanism is governed by diffusion, convection, or
recombination at the walls. As is apparent form Eq.(4.13), the
various electron production and loss terms depend on different
powers of the density. Hence for low density, only those terms
having the lowest power of density will play a role at all. In fact
diffusion, which is not included in Eq.(4.13), but whose loss rate is
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linear in density will often be the dominant loss mechanism. From
the knowledge that a process and its inverse drive the system to
thermal equilibrium, we can calculate the coefficient for one of the
processes if that for the inverse process is known. From this
knowledge, one can estimate the density regimes for which the
plasma will tend to thermal equilibrium. This will occur at
sufficiently high density.
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5. Homogeneous, Molecular Plasmas

Processing plasmas are not usually atomic plasmas, atomic
argon plasmas are used in sputtering. The fact that the plasma is
molecular gives rise to chemistry, as well numerous rotational and
vibrational internal states which would figure in the energy
equation of the gas species. In this section we will discuss only the
chemistry of one of the simplest molecular plasmas, an oxygen
plasma. In a processing discharge, an oxygen plasma is important
because it is a source of atomic oxygen, a very reactive free radical.
We start with a discussion of a low density plasma with hot
electrons and cool gases and ions; the type usually found in
processing discharges. Many of the reactions rates are as given in
Talrose and Karachevtsev 51 .

One thing about a processing discharge is that the chemistry is
usually dominated by the free electrons. The reason is that the rate
of a chemical process goes as a = fovf(v)d 3v, so that the electrons,
with their lighter mass and higher temperature give rise an (X which
is (TeM/Tgm) 1/ 2 larger than a that of the gas if the cross sections
are equal. We also consider low density plasmas, so that the
chemistry is mostly through two particle collisions. The typical
reaction is then something like

A + BC -- AB + C

and these usually have high reaction rate. An alternate possible two
body reaction like

A + B-- AB

is usually less important because some third body not shown there
is necessary for momentum and energy conservation, a photon
typically. For instance one potential such process is radiative
recombination, whose reaction rate was calculated in the last
section. At temperatures of a few electron volts, the reaction rates
are about 10-13 cm 3 /s,. far smaller than other rates we will
consider here. Another possible chemical reaction, 0 + 0 -- 02 is
also typically not important in a processing plasma. Such a reaction
proceeds by the 02 forming a positive energy excited state. Then it
decays to a negative energy state by either radiation or interaction
with another oxygen atom or molecule. For the former, the decay
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time (that is the redissociation time) of the excited state is much
less than the radiative decay time, so the reaction through this
channel channel has very low rate. The other channel is through
interaction with a third body oxygen atom or molecule, which is a
three body process, which we assume is negligible at the low
densities considered. However if the third body is the wall of the
chamber, atomic oxygen can easily recombine, thus surface
reactions can be a whole new reaction set.

Let us then consider the two body reactions in an oxygen
plasma. We will consider 6 species, 02, 0, 02+, 0 +, e, and 0-, whose
densities we will denote a,b,c,d,e and f. Note that even this is
restrictive, because we are not considering excited states of the
oxygen. However, even with this restricted set, there are a very
large number of possible reactions. The principle reactions seem to
be:

Ionization:

e + 02 -4 2e + O2+ (5.1)

described by Eq.(2.12) with an ionization energy of 12 eV and a
maximum ionization cross section of 3x10 -16 cm2 , and.

e + 0 -4 2e + 0+ (5.2)

with Ei =15 ev, 0o= 3×10 1 6 cm 2 ;

Dissociative ionization:

e + 02 - 2e + 0 + 0+ (5.3)

with Ei=20 ev and co = 10- 16cm 2. Cross sections for these processes
are given in Ref(51);

Dissociation:

e + 02 -* e + 0+ 0 (5.4)

described by Eq.(2.12) with Ei=8ev, 0o = 10-16 cm 2 . This expression
agrees to within about a factor of two to that given in Ref.(51) p126.
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Dissociative Recombination:

e + 02+ _ 0 + 0 (5.5)

Assuming a dissociative recombination cross section as o=4x10-
16/E for E<3ev and zero otherwise (here and in all formulae, energies
are in ev and lengths are in cm) the dissociative recombination rate
is given roughly by (2.6xl0-S /Te)[1-exp-(3/Te)] in cm3/s

Dissociative attachment:

e + 02 -0 - + 0 (5.6)

This depends on the vibrational state of the molecule. For gas
temperatures below about 10000K, the gas is not strongly excited
and the attachment cross section peaks at about 10-19 cm for
energies between about 5 and 8 ev. The attachment rate is given by
roughly (6.4x10- 12 /ITe)x[(5/Te+1)exp-(5/Te) - (8/Te+l)exp-(8/Te)]
Although the rate of dissociative attachment is small, it is the
largest production rate for negative oxygen ions. Furthermore, while
the rate is small, if the plasma is weakly ionized, it multiplies the
concentration of 02, the largest concentration.

Electronic detachment:

e + 0- -* 2e + 0 (5.7)

The minimum electron energy for detachment is about 7 ev and above
this energy, the cross section is about 7x10- 16 . This gives a
detachment rate of 3x10- 7Te'l/ 2exp-(7/Te).

Associative detachment:

0 + O--02+ e (5.8)

The rate for this process is given as 3x10 -10 in ref (51) p.110.
Since it is strictly an atomic process, it does not depend on the
electron temperature. Ion-molecule reactions can have large cross
sections even without involving an electron component because the
ion can polarize the target molecule, thereby giving rise to a very
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large reaction cross section. If both are charged, the reaction rate

can be even higher, as in

Positive-negative charge exchange:

0- +0+-40+0 (5.9)

Reference 51 , page 115 quotes a reaction rate of 10-7 for the
reaction of nitrogen and oxygen. We assume that rate here.

Thus, even for this relatively simple system of oxygen and
nothing else, we have identified nine important reactions; there are
undoubtedly many other important ones left out, especially the many
involving the vibrationally excited states oxygen. Below we
enumerate the processes and the approximate reaction rate in cm 3/S

at an electron temperature of 3 ev, a typical temperature for a
processing discharge. We denote the reaction rate by 0i where I
denotes the equation number 5.1-5.9

Pror: 3s Rate in cm3 /s

al 10-9

(X2 3xl 0-10

a3 3xl 0-10

a4 3x1 09

C5 6x1 0-9

{6 3x1 0 12

a{7 1.7x10 8

X8 3x1 0-10

(X9 10-7

34



In a weakly ionized processing plasma with low gas temperature,
and electron temperature in the ev range, all of the reactions
proceed only in the forward direction. The reverse reactions, in all
cases (except for 6 and 8 which of course are reverse reactions of
each other) have an energy threshold that the heavy particles cannot
get over, or are three body reactions which do not proceed at low
density.

The rate of change of the six quantities are then determined by
the six equations describing the reactions.

a' = -(al+cc3+a4+a6)ae + a8fb
(5.10)

U = (-c2b+(c3a+2cx4a+ct5c+a6a+a7f)e -((z8b-d 9d)f (5.11)

c' = (ala-c5c)e (5.12)

d' = (a2b+(x3a)e - oc9 df (5.13)

e' = (ala+a2b+a3a-asc-a6a+a7f)e + a8 bf
(5.14)

f' = a6ae - (a7e+ox8 b+a 9 d)f (5.15)

where a prime indicates a derivative with respect to time. It is
simple to verify that the reactions (5.10-5.15) together conserve
charge as indeed they must.

Since a processing plasma is in steady state, a natural
question is whether the steady state constituents of a processing
plasma can be determined from the chemistry alone once the
reaction rates (that is the electron temperature) are specified.
Although some quantities may have steady state densities
determined through the chemistry, in general the answer is no. We
now demonstrate each case. Consider first the case of 0-. There is
only one source of it, dissociative attachment, and three loss
channels. In steady state,

f = c6ae/(Ct7e+a 8b+a9d) < 2x10-4 a (5.16)
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If the fractional ionization is greater than about 10 -4 , the 0-
number density is small compared to the all other ion densities,
particularly if d=e. However the decay time for 0- to reach
equilibrium is less than (2x10- 8d) - 1 seconds, so at electron
densities of 1010, the decay time is small enough that equilibrium
could be reached for 0-. Normally this equilibrium would result in a
very low value of 0-. Thus, for the other rate equations, we make
the approximation f=0. In this case, it is clear that there can be no
equilibrium for a, because there are only loss terms. Similarly in
the electron equation, all terms are source terms except the a5 and

a6 terms. The former has a high rate, but it is multiplied by c, the
number density of 02 + , which is much less than a for weakly ionized
plasma. The latter has a very low rate. Thus these two terms are
small compared to the others, so effectively, the equation for e has
only production terms and cannot reach an equilibrium density.
Equation (5.12) for c looks like it could reach an equilibrium,
however the equilibrium value is c=(oai/ca5)a=a/6. Thus the
equilibrium fractional ionization predicted by the rate equations is
huge, much greater than what is observed in processing discharges.
Hence the inescapable conclusion is that chemistry alone does not
determine the steady state components of the discharge. As we will
see in a later section, it is chemistry coupled to the fundamental
discharge processes which determine the composition.

We now consider briefly the opposite extreme, a molecular
plasma at thermal equilibrium. Here, all species (including the
radiation) are at a given temperature T. Because the dense
background gas is at this temperature rather than the cooler gas
temperatures characteristic of processing discharges, the
equilibrium plasma is usually much more energetic, even though the
temperature is typically less than that of the electrons in a
processing discharge. Typical temperatures might be under 1 ev. In
thermal equilibrium, the reverse reactions cannot be neglected, in
fact thermal equilibrium is defined by a balance between forward
and reverse reactions which are satisfied for all possible reactions.

Let us consider the reactions we have just discussed for an
oxygen plasma, except let us make the additional simplification of
neglecting the 0-. Then there are 5 reactions with forward reaction
rate axl-aL5. However at thermal equilibrium, the reverse reaction

can also occur, and we define the rates of the reverse reactions as

01-15. The reactions and the reverse reactions all conserve charge
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and mass, so e=c+d and a+2b+c+2d=A, the total number of oxygen
nuclei. Setting each reaction at equilibrium, we find five
equilibrium relations

ala = Plec (5.17)

a2b = P2ed (5.18)

a3a = P3 ebd (5.19)

c4a = P 4b2  (5.20)

c5ec = P5b 2  (5.21)

The five conditions specified plus the conservation relations would
appear to over specify the system. However this is not so, because
the equations are not all independent. For instance a can go to 2 b's
directly via equation (5.20). However alternatively it can go to 2 b's
by first going through an intermediate stage of an e and c, Eq.(5.17);
and then the e and c react to give 2 b's. Thus there must be a
relationship between the rates of the two reaction channels of
getting from the a to the two b's. Specifically, we must have P4/a4

=P1W5/ala5. Thus reaction with rate a4 is not independent in the
sense that its rates are determined by other reactions by the
principle of detailed balance. We can also show that reactions
(5.18) and (5.19) are not independent either, and the coefficients
must satisfy the relationship a3P2/a2P3=oC4/P4 Letting the three
independent reactions be those with index 1,2 and 4, and using the
conservation relations, we find

(c+d)c/(A-2b-c-2d) = P1/al (5.22)

b 2/(A-2b-c-2d) = a4/P4 (5.23)

(c+d)d/b = a2/P2 (5.24)

Since A, the total concentration is arbitrary, we have three
equations for the three independent variables b, c, and d. Thus at
thermal equilibrium, the reaction rates between the independent
forward and reverse reactions determine the equilibrium
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concentrations of all quantities in terms of the total number density
and the equilibrium temperature.

For the reactions enumerated here, the temperature is
generally low compared to the various ionization rates. In this case,
it is only the tail of the distribution function that does the ionizing.
As in many of the preceding calculations, the reaction rates for
those reactions requiring a minimum energy Ej will have a rate like
f(T)exp-(Ej/T), where here j denotes the reaction and takes on
values from one to five in the oxygen plasma we consider here, and
f(T) is a slowly varying function of T. While this form is
particularly useful for Ej>>T; it is still valid for Ej-T, but is not very
meaningful since in this limit, the exponential is no longer a rapidly
varying function of T. The first four reactions all take a minimum
energy to proceed in the forward direction. These are the ionization
energy of the oxygen molecule, 12 ev; the ionization energy of the
oxygen atom, 15 ev; the dissociative ionization energy of the oxygen
molecule,20 ev; and the dissociation energy of the oxygen molecule,
8 ev. Thus the a's for the first four will have this exponential
factor. The fifth reaction takes energy to proceed in the reverse
direction. When the oxygen atoms form the molecule, they lose an
energy to 8 ev in the center of mass frame. However it takes 12 ev
to ionize the molecule, so the colliding oxygen atoms need at least
an energy of 4 ev in the center of mass frame. Thus it is P5, not a5,
that will be multiplied by the exponential factor.
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6. Scaling Laws for Binary Collisional Plasmas

We consider the case of a processing discharge consisting of
three components, electrons (index e), ion (i), and neutrals (n).
These species may have internal structure, however to simplify the
notation we will not introduce additionai indices to account for it as
we did in the previous section. Nevertheless we include in our
description all ionization and excitation processes. The main
assumptions we make are that the plasma density is sufficiently
low that only binary collisions are included, and also that the
plasma is optically thin so all radiation escapes and has density
much less than thermal equilibrium radiation density. Notice that
thermal equilibrium ionization densities would occur only by chance
since the inverse processes to impact ionization and radiative
recombination are not included in the model. However for most low
density processing discharges, these assumptions are valid.

The plasma is described by the Vlasov Equation for the three
species coupled to Maxwell's Equation.

afa/at + V-Vfa + (ea/ma)[E+vxB/c]°Vvf = ,_bCab (6.1)

VxB = (47/c),_bnbebvb + (1/c)oE/Dt (6.2)

V.E = 4 n,_nbeb (6.3)

V-B=O (6.4)

VxE = -(1/c)DB/i~t (6.5)

The quantities n and nv are the first and second velocity integral of
the appropriate distribution function. These equations cannot be
solved analytically. However in some cases there are scaling laws
that which allow the solutions in one regime to be extended to
another. We consider only scaling within an atomic species. If one
goes from species to species (an oxygen to argon plasma for
instance), there are some simple scalings with mass as that
explicitly shown on the left hand side of Eq.(6.1). However collision
cross sections for all the multitude of possible processes depend
very much on the atomic species and there is no simple scaling law
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from one to another. Similarly, we consider only scaling laws that
leave particle velocity (and therefore energy and temperature)
constant. Cross sections often have complicated velocity
dependences for which there is no simple scaling. Furthermore,
experimentally, all processing plasmas have temperatures of a few
electron volts, whereas there can be a wide range of densities as
well as spatial and temporal scales.

The collision terms are quadratic in distribution function. If

we consider a scaling transformation of the form

f,=paf, t,=pbt, x'=pCx, v'=v, E,=peE, B' = pfB (6.6)

it is not difficult to see that there are no choices of exponents
(a,b,c,e and f) which leave equations (6.1-6.5) invariant. Thus there
is no general scaling law for a processing plasma. However there
are scaling laws that are consistent with certain approximations to
these equations. As one possibility, let us assume that the plasma
is quasi-neutral (more about quasi-neutrality in Section (8)), and
that the plasma currents are so small that they do not contribute in
a significant way to the magnetic fields. Then Eq.s (6.2 and 6.3) are
replaced with

Ybnbeb = 0 (6.7)

VxB = (1/c)DE/Znt (6.8)

In this case there is a scaling law,

a=e=f=l, b=c=-I (6.9)

This shows that if one solution (subject to this approximation) is
known, the densities of all species can be increased by a factor p as
long as all fields are increased by this sarme factor and lengths and
times (inverse of driving frequencies for instance) are decreased by
this factor.

Another approximation is that the plasma is collisionless so
that the right hand side of Eq.(6.1) vanishcs. In this case another
scaling law exists

a=2, e=f=l, b=c=-I (6.10)
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Thus the density densities now increase as the field strength
squared in the scaled solution.

In processing discharges, usually neither of these
approximations are are valid over the entire discharge. However one
or the other may be valid in large portions of it. As we will see, the
main volume of the plasma is quasi-neutral, so that the scaling laws
of Eq.(6.9) can be used to scale from one density regime to another.
In particular, for a discharge generated by a DC electric field, the
density (or operating pressure) divided by the electric field is the
same as the discharge is scaled from one regime to another. Thus
E/p is a commonly used parameter in discharge plasmas. However
this in not an invariant quantity if the plasma allows charge
separation. We will see shortly that processing discharges, the
plasma near a surface is dominated by sheaths in which quasi-
neutrality is strongly violated. In fact these sheaths are what
generate the fast ions and atoms that are important for the etching,
sputtering, ion implantation, etc. Since they are such a crucial part
of the processing discharge, E/p is generally not an important
parameter for the entire processing discharge, but only for that
region in the center which is quasi-neutral.
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7. Fluid Equations for Processing Plasmas

This section derives fluid equations for the components of a
processing discharge. To simplify the derivation, we assume only a
single atom for the background fluid and and the associated singly
ionized ion. There are then three species in the plamsa which we
denote with subscripts a,e and i. The Vlasov equation for each
species is given by Eq.(3.1). Three fluid equations for number
density, momentum density and energy density are obtained for each
species. These are obtained by integrating the Vlasov Equation over
velocity, and multiplying by momentum and energy and then
integrating over velocity.

The fundamental difficulty is that each moment is coupled to
the next higher moment by the v.Vf term in the Vlasov Equation. The
hierarchy of fluid equations can only be closed by making some sort
of approximation. A typical one, one made in Ref.(5) is that the
distribution function of each species is approximately a local
Maxwellian. If each species had the same fluid velocity and
temperature and the system were homogeneous, this would be an
exact solution to the Vlasov Equation. However it is not a solution
to the Vlasov Equation for two reasons; first, the velocities and
temperatures of the components may be different, and second, the
system can be inhomogeneous and time dependent. The effect of the
different velocities and temperatures is an energy and momentum
exchange between the components as described in Sec 2. The effect
of the inhomogeneity is the introduction of transport. We will
consider these two processes separately.

To start, we will assume that the distribution of the species
in question is a Maxwellian and there are no internal energy states,
that is an atomic plasma with all atoms in the ground state. If the
fluid velocity of the species in question is u, the particle velocity in
Vlasov equation is given by u+w, so w is the random velocity about
the average. Where convenient, to keep the notation as simple as
possible, we will delete subscripts denoting species. Where
necessary we will return to using them. Then integrating the Vlasov
Equation over velocity and multiplying by my and integrating over
velocity, we find two equations for number density and momentum:

on/Dt + V-nu = Mc (7.1)
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anmu/at + V.[nmuu + nT] -neE - ne[uxB]/c = Pc (7.2)

The charge e is the charge of the species in question with the
appropriate sign, that is, it would have a subscript. Here, Mc and Pc
are the collisional rates of change of number density and momentum
density. The former comes from for instance ionization and
recombination, the latter from momentum exchange between the
different species as well as ionizationand recombination. Often it
is convenient to combine Eqs.(7.1 and 7.2) to give an equation for the
acceleration of the plasma species:

nmau/at + nmu.Vu + VnT -neE - ne[uxB]/c = Pc - muMc (7.3)

For the energy equation, we will consider the electrons and ions
seperately. For the electrons, multiplying the Vlasov Equation by
1/2mv 2 and integrating over velocity, we find and equation for the
energy is

a/at[1/2nmu 2 + 3/2nT] + V.[1/2nmu 2u +5/2nuT]

- neu.E = Wc (7.4)

where Wc is the collisional rate of change of energy density. The
total electromagnetic energy input into the fluid is the electric
field dotted into the current density of the species, as is to be
expected. This can also be written as a temperature equation by
subtracting u dotted into the momentum equation and adding 1/2mu 2

times the number density equation. The result is

3/2anT/oft + 3/2u.VnT + 5/2nTV.u = Wc- u.Pc +1/2mu 2 Mc (7.5)

Notice that in Eq.(7.5) above, the electric field no longer appears.
The Ohmic heating is now expressed as a collisional heating. In
equations (7.1-7.5), we emphasize that the assumption has been
explicitly made that the species has a Maxwellian velocity
distribution with temperature T and velocity u. Thus the collision
term for the interaction of the species with itself vanishes; the
collision terms M, Pc and Wc describe changes in number density,
momentum and energy from the interaction of one species with an
other species in the plasma having different drift velocity and
temperature.

43



The ions can be more complicated because they can have
internal energy states. Molecules can have rotational and
vibrational states. At thermal equilibrium, the internal energy of
the ions over the internal states is governed by the partition
function, as discussed in Sec 4 and Ref.(50). However, low density
processing plasmas are almost never in thermal equilibrium
because the electrons are at much higher temperature than the ions
or neutrals. In this case the internal energy must be obtained in
some other way, perhaps by some approximation, or perhaps by
solving rate equations for the internal states regarded as important.
We will not consider this here, but will discuss atomic plasmas.
Again, we will not consider the internal states of the atom, but
there is one state that cannot be wished away and that is the
ionization. Since it take significant energy to ionize the atom, this
energy must be accounted for. If the ionization energy is E1, each ion
will be considered to have an internal energy Ei. In the simplest
description, it takes energy Ei to produce this ion. Actually, since
ionization can occur in multistep processes, where some of the
intermediate steps radiate away their energy, the actual energy it
takes to produce an ion can be larger than Ei, but we will simplify
the description by taking Ei to be the entire energy involved inthe
ionization. In this case, we will assume that each ion has an
internal energy Ei. Then the temperature equation for atomic ions
becomes

3/2a(nT+nEi)/at + 3/2u-VnT +EiV-nu + 5/2nTVu =

Wc - u.Pc +1/2mu 2 Mc (7.6)

Let us first discuss the momentum exchange, that is the force
between the different species. The average force is given by
Eq.(2.7). It is not difficult to show, that the momentum integral of
the Boltzmann collision integral can be reduced to this form. We
focus here on the average force between the electrons, the main
current carriers in processing plasmas; and the atoms, the main
target of electron collisions since the fractional ionization is
typically low. For electron atom collisions, we assume that we >>
Ue, Ua, wa and expand relative velocities based on this scaling.
Defining naweap(we) as the electron momentum exchange collision
frequency, vp(we), Eq.(2.7) can be expanded in a power series.
Keeping only the first few terms, we find

44



Pea - -IJd3wad 3we{Wevp(w) +(Ue-Wa-Ua)vp(We)

+Weoavp/oaWe[Ue-Wa-UalWe]/wlfefa (7.7)

where the notation Pea means the average force, or momentum
exchange between electrons and atoms. The integral of the first
term in the brackets is zero because of the assumed Maxwellian
nature of fe. (Actually isotropy about the drift velocity is a
sufficient condition for the vanishing of this term. However if the
distribution function is anisotropic for any reason, for instance the
presence of a viscous momentum flux, or thermal energy flux, this
term will no longer integrate to zero over We. These are thermal
flux force terms for instance. We will not consider them here.) In
the simplest case, where vp(we) is independent of we, the Force term
is particularly simple. It is

Pea - -ne9[Ue-Ua}Vp = -Pae (7.8)

Since Vp is proportional to na, the force density has appropriate
symmetry between the species. For convenience, we will sometimes
use the definition vp(we) - na0p(we).

For elastic collisions, the energy density exchange between
species is given by Eq.(2.9). Again, one can show that an integral of
the Boltzmann collision integral gives this result. Expressing the
v's in terms of the w's and u's, we find

Wea = -kjd3wed 3wanenafefaop[mwe 2+2mweue+m Ue2 -Mwa 2 -

2MWa-ua-Mua 2+(m-M)(Ue+We).(Ua+Wa)] (7.9)

Here we have used m and M for the electron and atom mass
respectively. Also, we have made the simplifying assumption that
op is independent of w as we did for the momentum equation. The
integrals over w can now be done assuming Maxwellian distribution
functions. In addition to the elastic collisions, there is a
significant energy loss from inelastic collisions. The only inelasitc
collision process we consider is impact ionization. This causes a
loss of energy Ei from each electron doing the ionizing, and a
corresponding gain of internal ion energy of this amount.
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Wea - -knevp[3(Te-Ta) + (mue+Mua)-(Ue-Ua)] - EiMc (7.10)

Of this total electron energy loss, the elastic part goes into to the
neutral gas, so

Wae = knevp[3(Te-Ta) + (mue+Mua)-(ue-Ua)] (7.11)

and the contribution to the electron ion energy exchange is EiMc.

Notice that there are two contributions to the elastic energy
exchange term, one driven by the temperature difference between
the two species, and one driven by the relative velocity between
them. Notice that in the limit of m<<M, the W term approaches zero
in the reference frame in which the atoms are at rest. This is
reasonable, because in this limit, the electrons bounce off infinitely
massive, fixed scattering centers, which do not absorb from, or
contribute energy to the electron in an elastic collision. To next
order in m/M, there is a temperature equilibration whose rate is
-3(m/M)nevp(Te-Ta). For the case in which the electron thermal
velocity is much greater than the electron drift velocity u, the other
terms in Wea are less important. However the electron thermal
energy equation, Eq.(7.5) has a heating term equal to -u-Pc. Thus
collisions take energy out of drift motion an put it into thermal
energy. The second term in Eq.(7.11) above is an order m/M
correction to this electron heating. The momentum and energy
exchange terms derived hereare convenient approximations, but only
that, because the velocity dependence of 0 as well as most internal
energy states were neglected.

We now consider the case of transport. This gives rise to
terms in the fluid equation which result from the fact the the actual
distribution function deviates from the local Maxwellian. As we
will see, deviations from a Maxwellian are produced by gradients and
time dependences in the plasma. Typically we consider gradients to
be a more important effect than the time dependence. A method of
deriving an augmented set of fluid equations is to assume that the
distribution function consists of a Maxwellian times a summation of
various products of velocity. This is the approach taken in Refs.().
For instance a distribution which had a non zero component of
momentum flux (other than the scalar pressure of course) would be
something like wwfm where fm is the Maxwellian. We consider only
a single transport coefficient here, thermal electron energy flux. A
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distribution function can be written which has a non zero energy
flux vector, q=Jd3 wl/2mw 2wnf * 0. For a Maxwellian distribution
function, q=0, so no term from q appears in the fluid equations as
they have been written so far. If q*O, then in the energy density
equation, there is an additional term V.q on the left hand sides of
Eqs.(7.5 or 7.6). The trick then is to find q in terms of fluid
quantities.

Following the logic of Refs.O, we assume an electron
distribution function

f = fm[1-q.(mw/nT 2)(1-mw 2/5T)]
(7.12)

where fm is a Maxwellian for the electrons with Temperature T and
flow velocity u. The additional term does not contribute to the
density or the temperature because it is an odd function of w. The
coefficients of the two terms in the brackets were chosen so that it
does not contribute to the fluid velocity either. That is if v-u is
substituted for w, the fluid velocity will still come out to be u. The
lowest nonzero moment of the assumed distribution function is the
thermal energy flux, which comes out to be equal to q.

To determine an equation for q, we take the 1/2mv 2v moment
of the Vlasov Equation. The first term (the ai/t term) is relatively
straightforward to calculate. It is

a/at[1/2nmu 2u + 5/2nTu + q]

The second term (the vVf term) is more complicated. To write the
term in simplest form, we make assume that mu 2<<T and also that
muq<<nT 2 . Making this approximation, we find that this term
becomes 5/2VnT 2 /m. Upon several straightforward partial
integrations and vector manipulations, the electric field term
becomes

-neu(u.E) -1/2neu 2 E -5/2(eE/m)nT

The magnetic term is the most burdensome of all to evaluate. It
turns out to be
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-[5/2(neT/mc) + 1/2(neu 2/c)]uxB - (e/mc)qxB

This involves a fair number of vector identities and symmetries of f
and fro. In evaluating integrals over cross products in the terms
leading to the qxB term, it is often convenient to express cross
products in terms of tensor notation (axb)i = Eijkajbk where Eijk is
the completely antisymmetric third rank tensor having ±1 as the
nonzero elements.

Thus the energy flux equation becomes

o)/at[1/2nmu 2u + 5/2nTu + q] + 5/2VnT 2 /m

-neu(u.E) -1/2neu 2E -5/2(eE/m)nT -

[5/2(neT/mc)+1/2(neu 2/c)]uxB- (e/mc)qxB =Qc (7.13)

where Qc is the energy flux integral of the Boltzmann collision term.
This can be simplified further by using the mass, momentum and
energy equations to manipulate the left hand side of Eq.(7.13) into a
form in which the terms that do not involve q are subtracted out
from the left hand side. The result is

eq/at +5/2(nT/m)VT - (e/mc)qxB = Qc- Pc[5/2T / m+1 / 2u 2 ]

- 5/3u(u.Pc) + 5/3uWc + Mc[5/2uT-1/6mu 2 u] (7.14)

From the collision terms on the right hand side of Eq.(7.14), one can
track how the various fluid equations were multiplied by fluid
quantities and added or subtracted from the momentum flux
equation. In arriving at Eq.(7.14),. it is necessary to drop terms in
the spatial gradient term which are small by factors like mu 2 /T or
muq/nT 2 . That is the flow velocity and energy flux velocity are all
assumed small compared to the electron thermal velocity.

We now deduce an approximate evaluation of the right hand
side of Eq.(7.14) so as to derive a fluid equation for q. In a weakly
ionized plasma, the main electron collision process is with the
background ions. We assume that the background gas consists of
atoms of infinite mass compared to the electrons which are at rest.
Thus the electrons perform purely elastic scatter from fixed cites.
If we make the same simplifying assumption as before, namely that
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the momentum exchange collision frequency is independent of
velocity, we have Pc = muvc and Wc= 0 (or a term of order m/M in the
reference frame in which the atoms are at rest). If we further
neglect the effect of the ionization on the energy flux, we have the
result that the right hand side of the flux equation becomes Qc-
5/2TPc. Now let us look at Oc as gotten from the Boltzmann
collision integrals for stationary, infinite mass ions. It is

0 c = Jd3vd 1/2mv 2vnaneo(v, -Q )v(fe'-fe) (7.15)

where as before, a primed variable denotes the velocity of an
electron which ends up at velocity v after a collision of angle Q. For
paricle veocities v and v' related by a binary collision from an
infinitely massive, stationary target v2 =v' 2 since electron kinetic
energy is conserved in such a collision. In the collision itself,
a(v,Q)d 3v=a(v',Q)d 3 v' by the principle of detailed balance as in Secs 3
and 4. Thus, using these relations, and the fact that v is a variable
of integration which can be relabeled as v' in the integral, one can
derive the result

Qc = -d'vdl 1/2mv 2 (v-v')nao(v,f )vfe (7.16)

Now for a scattering angle of 0, we can write

V = vivcosO + vivxinsino (7.17)

where in is a unit vector perpendicular to the plane of the collision.
The perpendicular part then integrates to zero over angle, and the
parallel part is related to the momentum exchange cross section.
We find

Oc = -Jd3vl/2mv2vvc(v)fe (7.18)

Expressing v as u+w, and assuming that vc is independent of v, we
find that 0 c = -vpq + 5/2TePc, so the equation for q becomes

[o/ot + vp]q -(qxflc) +5/2(nTe/m)VTe = 0 (7.19)

where .c is the vector electron cyclotron frequency. Generally, for
equilibrium conditions, we neglect the time dependence of q. Then
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the the value of q depends greatly on the magnitude and direction of

the magnetic field. Specifically,

qB = -5/2(nTe/mvp)(iB-VTe) (7.20)

and

qT = -5/2(nTe/m)[vc 2 + !c 2]'{vcVTTe - iBxVTe} (7.21)

where the subscripts B and T mean parallel to and transverse to the
magnetic field. In all cases, the temperature gradient drives the
thermal conduction. If Vp>>Qc, the thermal flux is parallel to the
negativetemperature gradient and is proportional to the reciprocal
of the collision frequency as is conventional in kinetic theory. Here
however the collisions are with the atom background rather than
within the species being considered. If the magnetic field is large,
vp<<Q c, the thermal flux is anisotropic in the three directions of
magnetic field, temperature gradient perpendicular to the field, and
cross product of the two. The thermal conduction perpendicular to
the magnetic field is greatly reduced from its unmagnetized value.
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8. Quasi-Neutrality and Sheaths in Plasmas

Far from walls, plasmas are electrostatically neutral, that is
the density of electrons, (or electrons plus negative ic,,O i. _,qual to
the density of positive ions. This is called quasi-neutrality. At the
plasma densities relevant to processing discharges, any deviation
from quasi-neutrality would set up such large electrostatic fields
that the electron and ion densities would rapidly eyuate to one
another. Notice that quasi-neutrality does not mean exact
neutrality; the plasma, for one reason or another may require small
electrostatic fields, and these can come only from small differences
in electron and ion density. As we will see, the properties of quasi-
neutral plasmas are calculated using ni=ne as an approximate
solution of Poisson's equation and then calculating the electric field
from the remaining equations. Here and in the next two sections, we
will give several examples of this. However quasi-neutrality only
works up to a point. Near a wall or other boundary, quasi-neutrality
is generally violated for one reason or another and sheaths are set
up. It is these sheath regions which are so important for producing
the fast ions necessary for the processing; we have seen that
energetic ions are not generated in the bulk plasma.

To demonstrate the tendency of the plasma toward quasi-
neutrality, we consider an infinite collisionless plasma with
immobile ions and electrons with temperature T. If an added test
charge is inserted in the plasma, the neutrality is violated and
electrostatic potentials are set up. In terms of the electrostatic
potential, the equilibrium electron density is given by Eq.(3.14).
(The momentum equation for an isothermal electron fluid, T Vn=neE
gives the same result gives the same result.) If the perturbed
potential is small compared T/e, one can linearize Poisson's
equation and see that the potential decays exponentially to the
ambient value with a space scale of the Debye length (T/4nne 2 )1/ 2 .
This is an extremely small length, less than 100 m for a plasma
with density 1010 cm -3 and temperature 1 eV. This is the sheath. It
is almost always small compared to any other scale length in the
plasma. For instance since it is small compared to the mean free
path, this sheath is generally collisionless or nearly collisionless.
Thus the plasma bulk will be quasi-neutral over distances large
compared to the Debye length. However there are Debye scale
potential and density variations about any plasma boundary. If the
plasma is time dependent, for instance from some initial deviation
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from quasi-neutrality, it will then settle into a quasi-neutral state
over times long compared to that for a thermal electron to cross the
Debye length. That is the time for quasi-neutrality to reassert
itself is about the reciprocal of a plasma period, (m/4nne 2 )1/ 2 . It is
interesting to note that the feature scale on the workpiece (an
integrated circuit for instance) can be much smaller than the Debye
length. Thus once the workpiece is etched into patterns, there may
be effects of charge separation in the plasma local to the pattern.

Let us consider in more detail the formation of the sheath.
Consider a plasma of density n and electron temperature T, but with
cold ions to be in contact with a wall. The boundary condition on the
wall is that it absorbs all particles incident on it. Initially, the flux
of electrons into the wall is n times the average of one component
of velocity integrated over only positive velocities. This is
n(T/2nm) 1/ 2 . Thus the velocity into the wall is about the electron
thermal velocity, and the electrons within a Debye length of the wall
are cleared out within about a plasma period. The wall charges up
negative and begins to accelerate the ions toward the wall. Thus
there is a flux of particles toward the wall, and this flux is assumed
to be absorbed. The question then is under what conditions a steady
state sheath can be generated and what the particle flux and electric
current to the wall is.

Since the sheath has Debye length scale, which is assumed to
be much smaller than mean free path or geometric scale length, a
one dimensional model is valid. The sheath is at the right hand edge
of a collisionless plasma. The electrons have temperature T and the
ions are coid. Both have number density no far from the sheath
where the potential is defined to be zero. Since quasi-neutrality is
violated in the sheath, it is described by Poisson's Equation

d 24/dx 2 = -4ne(ni-ne) (8.1)

To solve this, we need the electron and ion density in terms of 0.
The electron density we have derived already, ne = noexpeO/T. The
ions are described in terms of a flux toward the sheath. At x=-oo
the ion velocity is uo. Since nu=nouo, the ion density in terms of the
potential is ni = noUo/[uo2-2eo/M] 1/ 2 .

We expect the ions to accelerate through the sheath, so we
expect 0<0, that is we expect the plasma to have a higher positive
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potential than the bounding surfaces in contact with it. Also, we
expect the sheath to have higher ion density than electron density,
since the whole idea is that the ions are following the electrons out.
For small € the electron and ion densities follow by linearization, ni
= no(l+e¢/Mu 0

2 ) and ne = no(l+e¢/T). For €<0, the ion density in the
sheath is greater than the electron density only if Mu0

2 >T. Also from
Eq.(8.1) it is clear that if this is so, the sheath is exponentially
decaying into the Frasma, otherwise Eq.(8.1) has a solution which is
oscillatory in x and the solution does not have the character of a
sheath, but rather of a wave. Thus in order for a sheath to be
formed, we must have

uo>[T/M] 1/ 2  (8.2)

For the case of an equality in Eq.(8.2), this is called the Bohm
criterion4 8 . The Bohm criterion is often used as a condition
separating the plasma from the sheath, and in general this is
correct. However the situation is complicated in general, and to
determine the actual condition, one must look at the fluid solution
both near and far from the wall. The case we have been considering,
a semi-infinite one dimensional collisionless plasma in contact
with a wall is underspecified. To satisfy the sheath condition, any
incident ion velocity greater than ,,T/M will suffice and smaller
velocities will not.

To come up with a simple specified system, we will consider a
spherical instead of planar wall. We will assume that the spherical
radius is small compared to any other physical size characterizing
the plasma, but large compared to the Debye length. Thus there is an
outer quasi-neutral region of size characteristic of the radius, and a
Debye length scale inner region, right near the sphere which is
nearly planar. The boundary condition on the sphere is that it
absorbs every charged particle impinging on it and does not emit or
reflect anything. Far from the sphere, the outer region is assumed
to be an infinite homogeneous plasma with cold ions, electrons of
temperature T, and number density no. Thus there is both a particle
flux and an electric current to the sphere, and we wish to relate
these to the potential of the sphere. The potential of the plasma far
from the sphere is zero, and this is defined as the plasma potential.
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Using the relation between the potential (and electric field)
and electron density, we find that the steady state ion momentum
equation becomes

Mudu/dr = -(T/n)dn/dr (8.3)

where we have assumed quasi-neutrality, ne=ni=n. The steady state
mass conservation equation, in spherical geometry becomes

d/dr(r 2 nu) = 0 (8.4)

Combining these, we find a single equation for u,

du/dr = -2u/r[1-Mu 2/T] (8.5)

Notice that this equation is singular at u2 =T/M, the precise velocity
defined by the Bohm criterion. However the singularity is only a
singularity of the slope, u itself is defined by Eq.(8.5) right up to the
singularity. In fact the equation can be integrated analytically. To
specify the outer solution, we need only integrate it subject to the
appropriate boundary condition.

The appropriate boundary condition for the outer solution is
that the singularity is at r=ro, the surface of the sphere. To see
this, note that at the singularity, the infinite slope means that
quasi-neutrality has broken down and that Poisson's equation must
be used instead of the quasi-neutrality condition. However Poisson's
equation has no singularity, but it has a higher derivative, d24/dx 2 ,
which introduces a much smaller length scale where it is needed.
Thus the singularity is really the mathematical treatment begging
for inclusion of the shorter length scale, or higher derivative. Since
the Debye length is assumed to be much less than the radius of the
sphere, on the scale length of the outer solution, the singularity is
at the spherical surface (or actually a few Debye lengths away). The
outer solution, determined by integrating Eq.(8.5), subject to the
boundary condition that the u=JT/M at r=ro is

r2uexp-[Mu 2 /2T] = r02 ('T/M)exp-1/2 (8.6)

This solution is also consistent with the boundary condition at r=o,
u=0=0. At the singular point, the electrostatic potential is given by
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e /T = -1/2, so the density is given by n=noexp-1/2. Thus the mass

flux into the sphere is

dM/dt = 4xro2noM(/T/M)exp-1/2 (8.7)

and it is specified entirely by the outer solution.

The singular point near the spherical surface marks the
beginning of the inner solution. To actually determine the total
solution, one must in general do a matching of the inner and outer
solutions. Typically this is complicated and involves intermediate
solutions with scale lengths that are some fractional power of
products of the scale length of the inner and outer solution. In many
cases the information desired depends in detail on this matching.
The most famous case in the plasma physics literature is a tearing
mode, where the growth rate depends on precisely how the inner and
outer solutions are matched 52 ,5 3 . Just patching them together at
the singularity will not give the growth rate of the mode.

Fortunately, the case we are discussing here is much simpler,
and the main information required, the current as a function of
tsphere Voltage can be obtained with a simple patch. We are not here
interested in the precise structure of the transition region for its
own sake, so we will not look into the more complicated problem of
the detailed matching. However other sheath problems in processing
discharges may require this procedure.

The equation for the nonneutral sheath region is Poisson's
Equation

d 24/dx 2 = -4neno[(-TI2e) 11 2exp-l2 - exp(eo/T)l (8.8)

where we have assumed as initial values, the parameters at the
outer singular point. If this equation is initialized with eo=-T/2 and
a small negative slope, a sheath solution with a Debye length scale
will result. Since the sphere is assumed to simply absorb all
incident particles, and since the electron density is known as a
function of 0, we can calculate the current as a function of the
sphere Voltage 0o. Of course the ion current to the sphere is simply
e/M times the ion mass accumulation. The electron current density
is that from half a Maxwellian at the electron density of the wall.
Thus the current is
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I = -4xero2 no[(T/2xm)l/2 exp(e~orr) - (4T/M)exp-1/2] (8.9)

For this solution to be meaningful, the potential of the sphere must
be less than -T/2e, or the outer solution will be non singular. At
this potential, the current to the sphere is large and negative, it is
nearly the full electron current of a half Maxwellian electron
distribution. As the potential is lowered, the magnitude current
decreases until it vanishes at a potential of

e~f/T = 0.5[ln(m/M) - 1] (8.10)

This is called the floating potential and is the potential a small
foreign body will float to if it is inserted into the plasma, but
cannot draw current. For potentials much below this virtually all of
the electron current is cut off, and the current to the sphere is
positive current from the ion flux, independent of the inner solution.

Thus for the case of the absorbing sphere, the Bohm criterion
is correct, but the justification lies in the singular nature of the
outer solution. In fact the inclusion of ion inertia will nearly
always generate a fluid singularity where the flow speed is equal to
the sound speed. It is this singularity wich marks the edge of the
outer region and therefore the place where quasi-neutrality breaks
down and Poisson's equation must be used to describe the plasma.
The singular nature of the outer solution, at just the Bohm velocity,
is then what usually justifies Bohm criterion. While this singular
point is the justification, in many cases the singularity can be
approximated away as we will see in the next section.

We next consider what happens when the Voltage on the sphere
or workpiece is lowered still further. If the magnitude of the
Voltage is much greater than the electron temperature, electrons
are virtually excluded from these regions of the sheath according to
Eq.(3.14). For instance the electron temperature might be 1 eV, and
the negative Voltage on the workpiece might be a kilovolt. In this
case, electrons will be excluded from perhaps 99% of the Voltage
drop. The edge of the electron region will be the source of
nonneutral ion flux, and the current will be purely ion current form
the edge of the electron boundary to the workpiece. Since the ion
current emerges from the sheath region at low Voltage, the ion
region is a planar ion diode. Across this ion diode, the relation
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between Voltage, current and thickness s is given by the Child-

Langmiur space charge limited current equation

J(A/cm)=1 0-8 (Ma/M)1/ 2V3/ 2 (volts)/s 2 (cm) (8.11)

where Ma is the mass of an argon atom. For instance for a kilovolt
across a centimeter in an argon plasma, the ion current is about
.xl0- 4A/cm 2. Thus the ion diode thickness is generally much
greater than the Debye length which characterizes the electron-ion
sheath we have just discussed. However to simplify the analysis,
we have assumed that the ion sheath thickness is small enough that
the ions can be regarded as collisionless. The extensions of the
Childs-Langmiur law to the case of collisional ions are
straightforward, and one case will be worked out as it becomes
necessary in the next section.

One difficulty is that in a plasma, the Voltage and current are
not simultaneously specified; only one is given, and the other is
derived from the Ohm's law for the plasma or its equivalent. Thus
one additional relation is required to determine the ion sheath
parameters. In the next sections we will see how this
determination can be made for DC and RF discharges.

For now, we will consider the simpler case of plasma
immersed ion implantation (PIll). In this case a workpiece ,
inserted in the plasma of number density no, and is pulsed with a
large negative Voltage, a Voltage we will assume to be much greater
than T/e. Before the Voltage is turned on, the workpiece will be
bombarded with a low energy ion flux as we have just described.
Then at time t=O, a Voltage pulse V(t) is imposed. Then the plasma
electrons begin to be excluded from a region of width s near the
workpiece. At t=O, s=O. We will assume that s is changing with time
very slowly compared to the ion flight time across the sheath
region. Then the sheath behaves instantaneously like an ion diode.
However the current density is simply the rate that the sheath eats
its way into the plasma. That is

-J = noeds/dt (8.12)

where for the configuration we envision, the plasma on the left of
the workpiece, so J>O and ds/dt<O. Equating the current to the ion
diode result, we find a single equation for s (now interpreted as the
magnitude of the sheath width) in terms of the Voltage pulse
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ds/dt = 6x10 12(Ma/M)1/ 2V3/2(t)/nos 2  (8.13)

where no is in cm- 3 . Integrating once, we have

(1/3)s 3 = 6x10 1 2 (Ma/M)"/2fo tV(t)dt/no (8.14)

If the Voltage turns on abruptly in time, the nature of the solution of
Eq.(8.14) is that at early time s changes rapidly in time so that the
assumption of a stationary ion sheath is invalid. In the more likely
case of an adiabatic rise to the final Voltage, Equation (8.14) should
be a good description of the ion diode width as a function of time.
From this and the Voltage pulse shape, one can calculate the current
pulse and therefore the charge dose as a function of energy which is
embedded in the workpiece.

So far we have considered only the flux of energetic charged
particles to the workpiece, those generated in the sheath. However
in processing discharges, there are also energetic neutrals
impinging on the workpiece. The only apparent source of these
neutrals is ion charge exchange collisions in the sheath. That is an
ion, in colliding with a neutral, takes an electron from the neutral.
The ion then becomes a fast neutral and the neutral becomes a slow
ion. Charge exchange collisions are often the most important of the
ion-neutral collision processes. If we assume that the collision
rate is small enough that ion collisions are a small perturbation on
the overall ion flux through the sheath, one can calculate the flux of
fast neutrals from the charge exchange cross section Gex(E) where E
is the ion energy. If the ion density and velocity at a position x in
the sheath are ni(x) and v(x), then the flux of neutrals dF, produced in
region dx of the sheath is given by

dF = ni(x)v(x)naa(E)dx (8.15)

where na is the atom number density. The relation between ion
energy (or velocity) and position in the sheath completes the
description. Thus from a knowledge of the charge exchange cross
section and sheath parameters, one can calculate the flux of
energetic neutrals onto the workpiece for the case where it is a
small perturbation of the ion flux.
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9. DC Discharges in Cylindrical and Planar Geometry

As we have seen in the previous section, a steady state
discharge in contact with at wall is characterized by a large region
which is quasi-neutral, which then transitions, near the wall, to a
sheath region which is nonneutral. Generally the quasi-neutral part
of the plasma is described by fluid equations and in general, two and
three dimensional effects can be very important, although the
simplest one dimensional treatments are often useful. The sheath
region is usually thin compared to macroscopic scale lengths, and
perhaps even to mean free paths. It is usually one dimensional.
However a fluid theory typically does not provide a full description
of the sheath. For instance as we have seen in the last section, the
electron boundary condition for an absorbing wall came directly
from the knowledge of the distribution function (the particle flux
for a half Maxwellian), and not from a calculation of fluid
properties. This is the general approach that we will use to
calculate the properties of processing discharges.

We will start with a description of discharges in cylindrical
geometry. One experimental fact is that the positive column of a
glow discharge can be arbitrarily extended in length with no change
of its properties. Chapman quotes Brown and Hittorf regarding the
latter's attempt to measure a fundamental length of the positive
column. He extended the length all around the lab until "a frightened
cat pursued by a pack of dogs came flying through the window. 'Until
an unfortunate accident terminated my experiment, the positive
column appeared to extend without limit'" Hittorf reported. Thus an
infinite cylindrical model of the discharge is in accord with
observations.

Let us assume that the steady state cylindrical plasma is
produced by a dc current. We assume that there is a central part,
containing virtually all of the plasma volume which is quasi-neutral.
Also we will neglect electron inertia and ion inertia in the axial and
azimuthal direction. Near the wall, the radial ion inertia is
important in that it is responsible for the singular behavior, so we
will start by including it, and then show how the problem can be
simplified by approximating it away. The quasi-neutral region is
described by the number density equation for electrons, the
momentum equation for electrons and ions, and the energy equation
for electrons. As far as the ion energy goes, we account only for the
ionization energy which the ions are defined as having. Furthermore,
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we assume the presence of an axial magnetic field throughout the

discharge.

We start with the momentum equation in the z direction

-eEz=muezVe (9.1)

where ve is the electron momentum exchange collision frequency
assumed to depend linearly on gas density, but otherwise is a
constant. In steady state, curl E =0, so that in the plasma, Ez is
constant and cannot have any radial variation. For virtually all
gases, mve>>Mvi, so that the axial current is carried by electrons and
and the energy input from the external circuit goes nearly entirely
into the electrons. From Eq.(9.1), one can easily calculate the
current density and total current

I = e2 Ez/mvefd 2 rn(r) (9.2)

The total power input into the electron thermal energy, from Eq.(7.5)
is nmveuez 2 where Ue can be related to the electric field or total
current through Eqs.(9.1 and 9.2). We assume that uez is much
greater than the radial outward flux of electrons and ions so that
energy input or output arising from the radial motion is small.
Generally we regard the total current as the specified quantity. In
terms of it, the power input per unit length is

dP/dz = ml 2 ve/e 2Jn(r)d 2 r (9.3)

This then describes the Ohms law and energy input to the plasma.
We now consider the radial particle and energy flux, starting with
the particle flux. We neglect all inertia except radial ion inertia,
which is responsible for the singular nature of the quasi-neutral
solution. Then the steady state density and momentum equations
become

(1/r)d/dr(rnur) = ajn N (9.4)

Murdur/dr = e(Er + uieB/c) - Murvi (9.5)

0 = -eurB/c - Muiovi (9.6)
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0 - -e(Er + UeOB/c) -mveur - (1/n)d/dr(nT) (9.7)

0 - eurB/c - mueeve (9.8)

where N is the neutral density and the right hand side of Eq.(9.4) is
the ionization rate., where xi depends strongly on electron
temperature as discussed in the section on impact ionization. The
v's also depend linearly in N, but this dependence is not explicitly
shown. Also T is the electron temperature, the only significant
temperature in our discussion. The ions are assumed cold both
because very little of the Ohmic power goes into them, and also
because they equilibrate rapidly with the much denser neutral gas
component.

Equations (9.5-9.8) can be reduced to the single equation for Ur

and n

Murdur/dr = -{Ae+Ai}ur-(1/n)d/dr(nT) (9.9)

Here,

Ae = mve[l +Qe 2 /ve] (9.10)

with an analogous expression for Ai,where . is the appropriate
cyclotron frequency. This and Eq. (9.4) for n are two of the equations
for the density, radial velocity and temperature. By solving
individually for the density and velocity derivative, one can
determine that the solution becomes singular, in that the
derivatives approach infinity, when the radial velocity is the ion
sound speed.

Let us now discuss a way in which an approximate solution can
be obtained without involving the detailed singular structure of the
quasi-neutral solution. Neglecting ion inertia, we see that the ion
radial velocity is given by

Ur = -[n(Ae+Ai)]ld/dr(nT) (9.11)

Notice that the velocity is determined by the magnetic field as well
as collisionality of both species. For an unmagnetized plasma
typically Ae<<Ai so the radial velocity controlled by the ions.
However it does not take a large magnetic field to increase Ae until,
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it is larger than Ai, thereby making the electrons the dominant
species in controlling the drift radial velocity. At the center of the
plasma where radial derivatives are zero, the velocity is zero.
However as one approaches the edge, where the density is less, the
velocity increases both because the derivatives increase, and also
because the n in the denominator decreases. As some point, this
expression velocity will equal the ion sound speed. This then will be
defined as the edge of the quasi-neutral region. Typically this will
be at a density much below the central density and we will
characterize this density by ns. Its actual value, in terms of the the
central density no, will depend on the nature of the outer solution.

The equation for the density then becomes

(1/r)d/dr{r[Ae+Ai]-ld/dr(nT)) = - ai(T)Nn (9.12)

This must satisfy the boundary condition that n=ns=O at the plasma
edge. For given temperature profile, Eq.(9.12) is a linear equation
for n, so that it does not specify the magnitude of the density, but
only specifies the relative density profile as well as an eigenvalue
insuring the boundary conditions are satisfied at both the center and
edge. Approximating the temperature as constant, we find that

n(r) = noJo(Kr) (9.13)

where

K2 = a (T)[Ae+Ai]/T (9.14)

At the plasma wall r=a, the eigenvalue is determined approximately
by Ka=2.4, the first zero of the Bessel function. Thus we have
determined the relative density profile and the temperature. Notice
that for a low temperature plasma, ai is a very rapidly varying
function of T. Thus large changes in things like wall radius will
have only as small effect on the temperature. It is particularly
interesting that the magnetic field has little effect on the plasma
solution as well. Although the particle flux may be greatly reduced,
this is compensated for in steady state, by a relatively small
reduction of the plasma temperature. However, since the plasma has
finite length, the particle loss to the ends of the system along the
field lines may dominate the losses in an actual magnetized plasma.
We w'll discuss this configuration shortly.
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Thus we have many characteristics of the quasi-neutral
solution. At the singular point, the quasi-neutral solution joins
smoothly to sheath region as discussed in the previous section.
Since the wall is assumed to draw no current, the wall is at the
floating potential, which was also solved for in the previous section
in terms of the potential at the sheath edge as obtained from the
quasi-neutral solution. The sheath solution in the previous section
was derived for the case of an unmagnetized plasma. Here we will
show that as long as Ope>>e, (the usual condition in processing
plasmas) the sheath is unaffected by the magnetic field.

The sheath is assumed to be collisionless, so that here,
magnetic deflection of electrons must be balanced by electron
inertia. Solving the electron momentum equation in the y
direction(corresponding to the 0 direction in the cylindrical
configuration) and substituting in x, we find that the electron
momentum equation is integrable, and integrates to

1/2m(uex 2 -uexs2 ) = -1/2mQe 2(x-xs)2 + e(O-0s) - Tln(n/ns) (9.15)

where a subscript s denotes a quantity at the sheath edge. Since the
sheath velocity is typically T/M, the left hand side can be
neglected. If the sheath width is of order -de, the size of the
magnetic field term is of order (Qe/Ope) 2 as compared to the other
terms, so it too can be neglected. Thus for sufficiently weak
magnetic fields, the relation between density and electrostatic
potential is as in the unmagnetized case. Since the ion Larmor
radius at the sound speed is very large compared to the electron
Debye length, the ions are also unmagnetized in the sheath. Thus the
sheath solution is as in the unmagnetized case as long as
(Qe/(Ope)2<< 1.

Now we will calculate the density by considering the one
remaining relation not yet considered, the energy conservation
relation. The energy input to the plasma per unit length is given by
Eq.(9.3). The energy losses are either through charged particles or
through other channels. We will consider first the charged particle
channel. Every charged particle flows out of the plasma and takes
its energy with it. As before, the wall is assumed to be a perfect
absorber of charged particles. With the ion flux goes the ionization
energy and the ion kinetic energy that it has when it strikes the
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wall. The ion mass flux into the sheath is given by ns4/T/M. Thus the
ionization energy convected out is Eins4T/M. As the ion convects
through out the sheath, it falls through a potential corresponding to
the difference between the floating potential and the potential at
the sheath edge.given in Eq.(8.10). Thus the ion energy flux
convected out is (ns4T/M)(T/2)[1+ln(M/m)]. Next we consider the
electron energy flux out of the plasma. The electron distribution is
in contact with the wall, so that the electron energy flux out is the
electron energy flux of half a Maxwellian, analogous to the issue of
electron density flux. This calculation gives the result that the
energy flux is 2nT(T/27cm) 1/ 2 . A we have derived in the previous
section, the electron density at the floating potential is (m/M) 1/ 2

times the density at the sheath edge. Thus the surface power
convected out per unit length is

dPs/dz=2nrns(T/M)/ 2 [Ei +(T/2)(1 +ln(M/m))

+ 2T(T/2nM) 1/ 2]  (9.16)

In addition to the surface flux out, there is a a volumetric
power loss from radiation as well as from heating the neutral gas.
This volumetric power loss is

dPv/dz = Jd2 r(3m/M)venT + Jd 2rnPr (9.17)

where Pr is the radiated power loss per electron. Note that the
volume power loss is proportional to N while the surface power loss
is nct. However the total power loss is proportional to the electron
density; to the density at the singular surface for the surface loss;
and to the average density for the volume loss. These two are
related to each other through the density profile; the Bessel function
in our case. The power input per unit length is given by Eq.(9.3).
Notice that this is proportional to the reciprocal of the average
density. Equating the power in to the power out gives us an
expression for the overall electron and ion density of the plasma.
We find that the electron density is proportional to the total current

Let us now recall the molecular oxygen plasma discussed in
Section 5. For the low density plasma, it was pointed out that there
was no sensible equilibrium. For instance for the 02 species, there
were only loss terms, while for electrons there were only
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production terms. For 0 there is only a single, relatively weak loss
mechanism fighting many much stronger production mechanisms,
considering that 02 is assumed to be the major species. An
equilibrium density for 02* was possible, but at much too high a
value. We see now that the other part of the issue is the
electrodynamics of the plasma itself. The loss of electrons as well
as positive ions to the walls now allows equilibria to form as we
have just calculated here. As far as the 02 is concerned, from low
density chemistry alone, there were only loss terms. However as
the 02 , 0+, 0 and the associated electrons reach the walls of the
discharge, they recombine. That is for an electron and ion to
recombine, there must be a third body present to take up the energy
and momentum. The wall serves as a third body here. We have
assumed for a boundary condition that the wall absorbs all particles
impinging upon it. However once these particles are absorbed, it is
likely that, for a totally inert wall, they recombine to the
energetically favored species, 02 in this case. Thus the wall is a
source of 02 which allows an equilibrium to form regarding this
species as well. Thus as a far as the 02 is concerned, there are
volumetric losses, which are balanced by production at the surface
and inward particle flux.

For neutral atomic oxygen the reverse is the case, there are
volumetric production mechanisms leading to a steady state flux to
the walls where the it recombines to form 02. Thus the steady state
number density equations for 02 and 0 are

(1/r)d/dr(rFa) = Sa (9.18)

(1/r)d/dr(rFb) = Sb (9.19)

where we have used the notation of Section 5 where a corresponds
to 02 and b corresponds to 0, and F is a number density flux and S is
a source. For 02, Sa is negative, the flux is inward, and just
balances the volumetric loss. If 02 is the predominant species, then
Fa = aua where a is the equilibrium density. Thus the velocity as
well as the flux can be obtained. For 0 the opposite is true, and there
is an outward flux to the wall. This atomic oxygen is of course the
free radical and often the plasma is used simply to produce it so
that it can react with the wall material and chemically affect it. In
fact more realistic models of the processing discharge would have
to account for the reactions at the wall and not simply assume that
everything just recombines to form the initial products. Hence to
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summarize, the equilibrium properties of low density processing
discharges, and the associated fluxes of the free radicals to the
wall or workpiece, are not determined by chemistry alone, but by a
combination of it as well as plasma electrodynamics and reactions
at the wall.

We now consider the case of a planar discharge, and in doinig
so, will concentrate mostly on the differences between it and the
cylindrical case. There are two principal differences. First is the
fact that the velocity of both species is entirely in the x direction,
so that this single velocity component describes both the electric
current and the particle flux to the walls. Second is the fact that
there is a cathode sheath (usually called the cathode fall), which we
will see is a very different sort of sheath from what we have
described up to now. The cathode fall is much more complicated and
our description of it will be more qualitative than quantitative, but
will identify the principal mechanisms responsible for its
formation.

In a one dimensional configuration carrying current density J,

the electron and ion velocities are related by

Ue = ui - J/ne (9.20)

As before, we assume that the main part of the plasma is quasi-
neutral, with number density and momentum equations

d/dx(nui) = ainN (9.21)

0 = -d/dx(nT) - neE -nmve(ui-J/ne) (9.22)

0 = neE - nMviui (9.23)

Unlike the cylindrical plasma, here the electric field does have
variation in x, whereas the current density J does not. Eliminating
the electric field, we find a single equation for density
(approximating T as constant and Mvi>>mve as before)

d/dx[-(T/Mvi)dn/dx] = oainN (9.24)

and the ion and electron velocities are
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ui= -(T/nMvi)dn/dx + (mve/(mve+Mvi))J/ne (9.25)

Ue =-(T/nMvi)dn/dx - (MvV(mve+Mvi))J/ne (9.26)

Thus both the electrons and ions have a gradient driven component of
velocity and a current driven part. The gradient parts are the same,
while the electron current driven part is much greater than the ion
current driven part. Thus the result is quite analogous to the
cylindrical case, except that both parts of the velocity are in the
same direction here.

The electron density profile and temperature can be
determined from Eq.(9.24) analogous to the case of Eq.(9.12) for the
cylindrical plasma. Now let us consider the boundaries at the
electrodes. As before, our assumption is that the boundaries absorb
all incident charged particles. The anode boundary condition is
relatively str-',ightforward. There is an electron and ion flow into
the anode, and its potential is determined so that the current
density is just J. This is analogous to the calculation for the
cylinder wall except that now the potential is somewhat higher than
the floating potential because the anode draws a net electron
current. In terms of J one calculates the anode potential relative to
the sheath edge and from that, the various energy fluxes. The sheath
width is several Debye lengths.

Now let us consider the cathode. By the assumed boundary
condition, the cathode does not emit particles, so the only way it
can draw the appropriate current is if a flux of ions is absorbed
there. However there is an immediate problem with this scenario, if
one assumes the same type of sheath as on the anode or cylindrical
wall. As the potential is lowered, electrons are all excluded and
ultimately the cathode will draw the ion saturation current nse/T/M.
The problem is that the discharge current is considerably greater
than the ion saturation current in almost all cases. One might think
that the solution is simply to lower the cathode potential further,
but this is not the solution. Lowering the cathode potential will
accelerate the ions to higher energy, but will not increase their
current. In steady state the current density is constant no matter
what the Voltage drop.

The solution is a very different type of cathode sheath, and a
much more complicated one. An accurate description can most likely

67



come best form a particle simulation, but we will derive the
qualitative features here. The only way that the cathode sheath can
draw a current larger than the ion saturation current is if electron
current is converted to ion current there. This can only occur
collisionally through the ionization term in the steady state
electron and ion density equation. Thus the cathode sheath is
inherently collisional, and therefore is of much greater length than
the anode or wall sheath.

We will model the configuration as having the wall on the
right, so ion velocity into the wall is positive and E>0. Any electron
velocity in the sheath is in the negative direction (meaning positive
electron current). The equations for the electric field and currents
are Poisson's equation and the continuity equations for electron and
ions. They are

dE/dx = 4 ne[(ji/ui)+(je/ue)] (9.27)

djidx = -aiNje/ue (9.28)

dje/dx = aiNje/ue (9.29)

Notice that the continuity equations now allow the exchange of
electron current for ion current while conserving total current
density, j =je+ji= constant. However this exchange takes place over
a collisional (actually ionization) scale length. Over the collisional
scale length ue = -eE/mve and ui = eE/Mvi.

We will now briefly discuss two aspects of the solution of
Eq.(9.27-9.29) before developing the solution. First of all, up to
now, we have specified boundary conditions of walls that absorb
particles but do not emit them. Actually, for the cathode sheath, the
boundary is a little more complicated in that whenever an energetic
ion hits the wall, it typically knocks out an electron with some
probability y. For most materials and for most ion energies, y is
between about 0.1 and 0.2. We will see that our solution for the
cathode sheath depends weakly on this y value. Secondly, the sheath
fields are high, and the electrons and ions electrons are accelerated
to large velocity, much large velocity than what they obtain in the
fields of the bulk plasma. Thus it is not at all certain that drift
velocities will be much srfaller than thermal velocities, or even
that a fluid treatment will be strictly valid. The resistive heating
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on the electron and ion plasmas in the sheath are much greater than
what they are in the bulk, so we expect temperatures to be much
higher, as is generally observed. The cathode sheath, or cathode fall
as it is called, is gererally the brightest portion of a glow discharge.
Thus, although it is approximate, we will consider ai to be strictly a
constant.

To solve Eqs.(9.27-9.29), first express je as j-ji in Eq.(9.27).
Then divide Eq.(9.27) by Eq.(9.28) to obtain a single equation relating
E to ji. Assuming that ji=O a the edge of the sheath where E=0, we
find

E= (4nM vi/aiN mve)[-ji-jln(1 -ji/j)] (9.30)

At the cathode, where ji=j/(l +y), we find

E = 4nMvij/aiNmVe (9.31)

for the values of y in the range specified. This in turn specifies the
energy of the impinging ions. The energy flux of ions into the
cathode is given E1 plus this energy times the ion particle flux. This
ion energy flux in turn is one of the powe, loss mechanisms, which
plays a role in determining the overall electron density.

To solve approximately for the spatial structure of the sheath,
we will approximate the solution for E in terms of ji by expanding
the natural log. We find

E = 2nMviji2/czmvej (9.32)

Then we assume that the charge density in the sheath is dominated
by the ion density; for electron current equal to or less than the ion
current, the electron density is much less because the electron flow
speed is much greater. Then expressing ji and ue in terms of E, we
find a single equation for E which can be integrated analytically. We
find that the sheath width is given by

L = (47n42/3)Mvde/(mve) 2 oX2N2  (9.33)

and the Voltage drop across the sheath is given by

V = (16t/2/3mve)(Mvi/mve) 2j2e/(aN) 3  (9.34)
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Typically, unless the discharge is very long, the Voltage drop across
the sheath is the dominant Voltage drop in the plasma. If this is so,
and the discharge circuit is constant Voltage, then the current is
proportional to neutral pressure squared, as specified by Eq.(9.34).
Thus we see that the cathode sheath is very different from other
sheaths, and is dominated by collisional exchange of electron and ion
current through the ionization. The relatively large fields and the
collisionality of the plasma there gives rise to more heating and
higher plasma temperature than what ona finds in the bulk. To
better quantify the sheath, the electron temperature would have to
be calculated, with the energy equation, or perhaps better still, with
a particle simulation since this portion of the plasma is probably
not really fluid like.
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10. RF Discharges in Planar Geometry

In processing discharges, power at an rf frequency 2xco,
typically 13 Mhz, is often used instead of dc power. As we will see,
this allows for high ion fluxes at both sheaths, For the dc discharge,
the cathode sheath was inherently collisional. In the case of the rf
plasma, the sheath may be collisionless, and it is the presence of
the oscillating current allows this. The fact that the sheath can be
collisionless would appear to allow for rf discharges at neutral
pressures less than the minimum required for dc discharges.
However sheath lengths are long compared to the Debye length, so
that while collisionless sheaths are allowed, collisions in the
sheath are usually important too. However to simplify the analysis,
we consider only collisionless sheaths here. Furthermore, the
workpieces typically do not have to be conductors, because there is
not necessarily any dc current drawn. Near the workpiece, the rf
electric current is displacement rather than conduction current.

To model the rf discharges in planar geometry, we assume that
in the central, quasi-neutral region,each fluid quantity has an
average value, and a value oscillating at the rf drive frequency. The
idea then is to write the fluid equations as two separate sets of
fluid equations, one for the dc quantities, and one for the quantities
oscillating at frequency w. Since the equations are nonlinear, there
will be coupling from one set to the other.

We denote the rf quantities with an underline, and generally
we assume that these are small compared to the dc quantities, so
that a perturbation theory can be applied. We will make the same
simplification that we did with the dc discharges, namely we will
assume in the mass and momentum equation that the temperature is
constant. Furthermore, since quasi-neutrality establishes itself in
times of order the inverse plasma period (<<o - ) and over distances
of order the Debye length, both the dc and rf plasma will be assumed
to be quasi-neutral. This central quasi-neutral region then attaches
itself to a sheath near the boundary. This sheath is not neutral, and
furthermore, the separation of the rf and dc components becomes
rather complicated. As in the dc plasma, the currents as well as
mass and energy losses of the sheath specif,, the boundary condition
for the central plasma region.
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The rf momentum equation for the the central quasi-neutral

part then becomes

mau./at = eE -mvei e  (10.1)

In writing Eq.(10.1), we have assumed that there is no dc current,
meaning that ue is equal to ui and is just the ambipolar diffusion
velocity of electrons and ions. This velocity is assumed to be small
and negligible on the left hand side of Eq.(10.1). We have also used
the fact that l.e=0 due to quasi-neutrality and the fact that hi=O, and
have also used our simplification T=0 in the momentum equation.
This gives

= eE/m(-iw+ve) = -J/ne (10.2)

which is also the Ohm's law for the plasma. In applying Ohm's law,
it is necessary to keep in mind that J has no x dependence due to
quasi-neutrality, while the x dependence of E is as specified by
Eq.(10.2), that is for constant ye, E is proportional to the reciprocal
of the density, just as in the case of the planar dc discharge.

Now let us consider the dc component of the electron
nomentum equation. Neglecting electron inertia for the dc part,

0=-eE - mueve - n-lTdn/dx (10.3)

that is with the approximations we have made regarding electron
,nertia, quasi-neutrality and rf temperature, there are no coupling
terms from the rf equations to the electron momentum equation and
ihe momentum equations are the same in the rf and dc plasma.
These are solved as in the case of the dc planar plasma. The
)oundary condition is that the wall is at the singular point, or if the
on inertia is approximated away, then the wail is taken at the
position where the outward velocity is the ion sound speed. This
Jefines the position where the quasi neutral part matches onto the
,heath. As in the dc case, the relative density profile and eiectron
temperature are determined. The overall density is determined by
the energy balance.

We now turn to the dc electron temperature equation. There is
a power input from the Ohmic heating. If J=-Josinwt then the
average power input in the electron temperature equation is
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dP/dz -0.5AmveJo 2/ne 2  (10.4)

where A is the area of the plasma. Also we have assumed no dc
current, so there is no power input from dc fields. Other than rf,
rather than dc power input, the dc electron temperature equation for
the rf discharge is as in the dc case. Balancing the power input with
the energy losses will give the overall electron density. However
the losses are through the sheath, so to determine these losses, we
have to model the sheath. We will also see that there is an
additional power input, through the sheath, and into the plasma.

As we saw in the previous section, dc ion sheaths either
involve Voltage drops of a few times the electron temperature and
had a Debye length scale; or else, if the ion current is larger than the
ion saturation current, is inherently collisional and had a much
longer length scale. However the time dependent nature of the rf
sheath allows additional flexibility in the nature of the sheath.
Specifically, much larger potential drops can be generated while the
plasma remains collisionless, somewhat analogous to PIll except ihe
time dependence is now oscilliatory. Thus an rf plasma allows for
much higher energy ions to impinge on the workpiece, while,
operating at lower neutral density.

We make the approximation that the rf frequency is much
greater than the ion plasma frequency, so that the ions, even in the
sheath do not respond to the rf fields, but react only to the dc fields
set up. (Recall that the boundary condition is that there is no dc
current; however as we will see, there are still large dc electric
fields in the sheath.) The frequency is low enough that the electrons
respond as if there were no time dependence. We assume further,
that the dc potential drop across the sheath is very large compared
to the electron temperature.

Let us say that the singular point of the quasi-neutral solution
is at x=0 and 0=0, and the wall is at x=sm at which point, there is a
!arge negative dc potential. The actual time dependent potential
between x=0 and X=Sm is complicated due to the fact that the
electrons oscillate back and forth between these positions. If the
oscillating and dc potentials are large compared to T/e, as in fact
we assume, the electron density is equal to the ion density to the
left of the position where the instantaneous potential is zero, and is
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zero to the right. Thus the picture of the sheath is that of an
electron density whose edge oscillates between O<X<Sm as the
current oscillates through a cycle. The position of the sheath is at
the instantaneous place where 1=O. However, one can also define a
potential averaged over an rf period; this is the potential that the
ions respond to. If there were no electrons at all present in the
sheath, the current, voltage and sheath width Sm would be related by
the ion diode Langmuir-Child's law, Eq.(8.11). Because there are
electrons in the diode region, the ion current is actually somewhat
greater than this. However this does not specify the problem,
because the specified quantities are Jo, ns, T and the incident ion
flow speed us=4(T/M), the first of which is specified, the others all
come from the outer, quasi-neutral solution. Thus the dc ion current
density is specified, but not the Voltage or gap spacing.
Furthermore, since there is no dc current, this ion current must be
cancelled by an equal and opposite dc electron current.

The actual solution for the rf sheath was derived by
Lieberman 3 6 by breaking the equations up into a time averaged
potential which the ions respond to, and an exact part which the
electrons respond to. We will not go through the nonlinear analysis
of Ref.(36), but will give a very simple, but approximate solution
which demonstrates the basic physics and scaling calculated by
Lieberman. If the position of the sheath edge is denoted by s, then

Josinot = neds/dt (10.5)

as in Eq.(8.12). At t=O, ds/dt=0 and d2 s/dt 2>0, so the sheath is at
plasma edge, the minimum value of s. Similarly, at t=n/o, the
sheath is at the maximum position, s=sm. In terms of the dc
potential, the ion density as a function of 0 is given by

n = ns(1-2eo/T)-"/ 2  (10.6)

assuming ui =us at 0=0. Inserting this value of n into Eq.(10.5), and
assuming that the potential is large compared to the temperature,
we find that an approximate relation between Sm and Om is

Sm = (e~m/T) 1 /2Jo/nseco (10.7)
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which serves as one relation between potential drop, sheath width
and plasma parameters. The other relation is simply the ion diode
relation, Eq.(8.11). These two relations then specify the scaling
laws for the sheath in terms of the oscillating current and the
plasma parameters at the singular point of the quasi-neutral
solution. The actual solutions that Lieberman finds from solving the
nonlinear equations specifying the rf sheath are

Ji=1.8JLC (10.8)

where Ji=nseus, and JLC is the current of the ion diode given by
Eq.(8.11) but with diode Voltage given by 0m, and gap by Sm, and

Sm = (eO/1.6T) 1/2 Jo/nseo (10.9)

Except for numerical factors of order unity, Lieberman's solution is
equivalent to the approximated one we have derived here. This then
allows us to calculate both the ion energy striking the surface as
well as the ion energy flux out for the power balance calculation.
From Eqs.(10.8 and 10.9), the Voltage drop across the sheath is given
by

*m(V)=0.6Jo 4 (mA/cm 2 )/{T(eV)[ns(cm- 3 )/1010] 2 [f/1 3MHz] 4} (10.10)

Since n is typically proportional to Jo, the dependence of € on Jo is
not as rapid as it appears in Eq.(10.10). However the potential drop
and sheath width still increase fairly rapidly with rf current Jo, so
that as the current increases, collisions and the in'eractions with
secondary electrons will become important.

We have calculated the dc ion current in terms of the plasma
and circuit parameters. In order to insure that there is no net dc
current, the dc ion current must be balanced an opposite electron
current. Note that at time t=o/w, the electron sheath is in contact
with the wall. Although the time of contact is short, the electron
current to the wall during this time can be large because the
electron thermal velocity is so much larger than the ion streaming
velocity. Thus dc current is preserved at its zero value by the
electrode drawing the necessary electron current for the time that
the electron sheath is in contact with the electrode.
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At time x/o, the actual Voltage across the sheath is equal to
the dc potential em. Also, J is an odd function of time, and V is an
even function of time, so the sheath is capacitive. If we define a
sheath capacitance by

-AJosinit = CsdV/dt (10.11)

where A is the area of the electrode, and if V is approximated as
*mC(l+coswt)/2, we can obtain the sheath capacitance, roughly equal
to A/Sm, in terms of the plasma parameters.

In addition to the capacitive nature of the sheath, there is also
a resistive part due to the fact that an an individual electron
incident on the sheath with velocity Vx bounces off with velocity
vx+2ds/dt, where ds/dt is the velocity of the sheath. In calculating
the energy flux bouncing off the sheath, we will only consider even
powers of ds/dt since these are the portions that will not average to
zero over an oscillation period. If we approximate the time average
value of (ds/dt)2 to be 0.5o2Sm 2 , we find that the additional power
input into the plasma is

Pos = 3Ans[e~m/T] 1/2 mo 2Sm2 (T/2nm) 1/2 (10.12)

where in estimating the power input, we have assumed the average
density of the sheath is ns/(epm/T)l/ 2 to account for the density
reduction as the ions accelerate through the sheath. This gives rise
to a resistive part of the sheath response. Often this heating is
called stochastic heating, since it is not related to plasma
collisionality. This power input into the plasma must be added to
the bulk resistive power input when calculating the energy balance.
Notice however that this power is a total power in through the
electrode. It is not put in uniformly along the plasma length as is
the Ohmic heating. Tnus, the longer the plasma, the less important
this power input will be. If the stochastic heating is expressed in
terms of J0 , ns and ( only, the result is that the power input scales
as J0

4/ns 2 w2 , or if the power input is expressed in terms of 0, it
scales as (02om independent of density and Jo

Now let us consider the rf response of a symmetric planar
discharge. There are two equivalent sheaths on the two equal area
electrodes. The rf current is the same through out the plasma. Thus

76



while the sheath is moving towards one electrode, it is moving away
from the other. For instance, while the sheath is in contact with the
right hand electrode, and the voltage drop to the plasma zero; it has
maximum separation from the left electrode and the voltage drop is
at its maximum value, the full dc voltage drop. If the voltage drop
across the sheath on the right is denoted Vr(t), then the Voltage on
the left hand sheath is given by Vi(t)=Vr(t-X/o), so the total voltage
drop across the plasma (assuming the sheath Voltage drops
dominate) as a function of time is Vr(t)-Vr(t-x/ow).

To conclude, let us briefly discuss the case of an asymmetric
discharge for which the areas of the two electrodes are not equal.
The total rf current through the electrodes must be equal to one
another. Thus JA is constant for each electrode. Then, according to
Eq.(10.10), the potential doop across the sheath at an electrode of
area A scales as A-4 , as long as the electron densities and and
temperatures are are equal at each sheath. This rapid variation with
area is typically not observed in experiments. Two reasons are that
the sheath is collisional, and also that the densities are not the
same at each electrode. This has been examined by Lieberman 3 7 , and
depending on what the collisional law is (ie constant collision
frequency, constant mean free path etc), there are different area
scaling of Voltage. The collisionless, uniform density case has the
most rapid scaling with electrode area. However even in the
collisionless case, density differences at the electrodes can give
rise to very different scaling laws. For instance, we have seen that
the stochastic power input is proportional to Om and independent of
density and current. If this is the dominant power input, and the
power is dissipated locally, from say local ionization or convection,
then the power loss is proportional to ns. Then ns scales as Om.
Using this scaling in Eq.(1O.1O), we see that the potential drop at an
electrode scale as A-4/ 3 , a much closer scaling to observation.

Summarizing, we have discussed four types of sheaths which
can form in the processing plasma, the pure ion diode with at time
dependent voltage pulse as is used for PIll, the Debye scale length
sheath at the wall and anodes of dc plasmas, the collision and
ionization sheath where the ion current exceeds the ion saturation
current, and the rf sheaths which can be collisionless, but become
collisional if the sheath width is great enough. The sheaths are
responsible for the main plasma wall interaction, and we have
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shown here how their properties can be calculated in various physics
regimes.
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